Toggle Test

Jump to: navigation, search

Toggle Test

1 Toggle Example

<jstbutton group="policies">Policies</jstbutton>

<jstbutton group="rec">Recommendations</jstbutton>

<jstbutton group="ref">Reference</jstbutton>

2 3.9.0 General

<tabs> <tab name="Information"> Bitumens are mixtures (in gaseous, liquid, semi-liquid or solid form) consisting primarily of hydrocarbons. They are thermoplastic, becoming viscous fluids with heat and reverting to more solid material as they cool. Their adhesive and waterproofing properties have been utilized in construction for hundreds of years. The most common of the many forms of bitumens are tars, pitches and asphalts. The roofing industry in Canada uses two forms of bitumens for built-up roofs: </tab> <tab name="More Information"> Asphalts are dark brown to black bitumens derived from crude petroleum oils. They are produced naturally or by industrial distillation and are usually in a solid or semi-solid state at ambient temperatures. </tab> </tabs>

<jstdiv group="policies">Bitumens are mixtures (in gaseous, liquid, semi-liquid or solid form) consisting primarily of hydrocarbons. They are thermoplastic, becoming viscous fluids with heat and reverting to more solid material as they cool. Their adhesive and waterproofing properties have been utilized in construction for hundreds of years. The most common of the many forms of bitumens are tars, pitches and asphalts. The roofing industry in Canada uses two forms of bitumens for built-up roofs:</jstdiv>

<jstdiv group="rec">

  • Asphalt (commonly used)
  • Coal tar pitch (rarely used)

</jstdiv>

<jstdiv group="ref">(In British Columbia coal tar pitch is not used in new construction, therefore, detailed information and specifications have been omitted.)</jstdiv>

3 3.9.1 Asphalt

<jstdiv group="policies">Asphalts are dark brown to black bitumens derived from crude petroleum oils. They are produced naturally or by industrial distillation and are usually in a solid or semi-solid state at ambient temperatures.</jstdiv>

<jstdiv group="rec">Distillation of crude petroleum oil removes gasoline and other volatile substances, producing “straight-run asphalt” (used in paving). Roofing asphalt is further refined by blowing air through molten asphalt or asphaltic flux at an elevated temperature (finished blowing temperature or FBT) to produce controlled oxidation. The oxygen reacts with the bitumen, removing a portion of the hydrogen, physically changing the asphalt from a liquid to a gel. This process raises the softening point (SP) producing a “harder”, less temperature sensitive asphalt more suitable for roofing. The final product is known as either oxidized asphalt, air blown asphalt, or roofing asphalt and is available in 45 kg (100 lb) “kegs” or by bulk in heated tanker trucks.</jstdiv>

3.1 3.9.1.1 Compatibility

<jstdiv group="policies">Although both asphalt and coal tar pitch are bituminous hydrocarbons, their chemical properties vary greatly and are incompatible for roofing purposes. Incompatibility can even result between two asphalts or two coal tars which have been obtained from different “crude” sources. For this reason it is best to specify that the bitumen used on a project be obtained from one source. Similarly, felts saturated with one type of bitumen should not be mixed with felts or bitumens of the other.</jstdiv>

<jstdiv group="rec">Incompatibility occurs when a chemical reaction between the bitumens results in one bitumen hardening and the other softening. In basic terms, the oils from one bitumen are “absorbed” into the other bitumen and the two products do not adhere properly. The possible results of this reaction are as follows:</jstdiv>


  • Asphalts applied over pitches will soften and flow off, leaving the hardened pitch exposed to rapid weathering.
  • Coal tar pitch will harden and crack.
  • Poor adhesion may result in membrane slippage and poor wind uplift resistance.

<jstdiv group="ref"> It is extremely rare to have coal tar pitch specified on new roofing projects in British Columbia. Most compatibility problems result from roof replacement projects or roofing over existing coal tar pitch roofs. In these cases a separation layer, such as insulation board, is often used to prevent the asphalt system from contacting any traces of the coal tar pitch roof. Consultation with a Professional Roofing Consultant is strongly recommended.</jstdiv>

3.2 3.9.1.2 Properties

The purpose of bitumens in a built-up roofing system is not to “glue” the plies of felt together, but to fuse with the saturant bitumen in the felts, essentially “welding” the plies together. Therefore, correct application temperature is vital and must be maintained to ensure fusion occurs.

Temperature affects the viscosity, or flow, of bitumen and, thus, the mopping weight. Temperatures that are too high (bitumen that has low viscosity and high flow) can lead to:

  • light moppings
  • incomplete film coverage
  • voids
  • a potential lack of waterproofing qualities

Temperatures that are too low (bitumen that has high viscosity and insufficient flow) can lead to:

  • heavy moppings
  • poor adhesion
  • potential slippage problems
  • high expansion properties
  • low tensile strengths

All of these may contribute to roof splits and other problems. Obviously, an optimum viscosity range, and therefore an optimum temperature range, exists at the point of application for achieving complete fusion, optimum wetting and mopping properties, which results in the desirable inter-ply mopping weight.

The EVT is the temperature at which asphalt will attain a target viscosity of 125 centistokes. A tolerance range is added for practical application in the field to accommodate the effects of wind chill, sunshine or ambient temperature. This range is expressed as a temperature, plus or minus 15oC (25oF).

Asphalt cools rapidly once it has been applied, making the roofing felt or membrane application critical. The National Bureau of Standards (U.S.A.) has published the following test results:

Condition:
Air and Substrate Temperature: +21°C (+70°F)
Wind Speed: 16 km / hr (10 mph)
Quantity of Asphalt: 1 kg / meters squared (20 lb / square)
Substrate:
On Felt: Over Plywood
On Fibreglass: Insulation
Cooling Time:
Temperature Drop
+260°C (+500°F) to +149°C (+300°F) 11 seconds 31 seconds
+204°C (+400°F) to +149°C (+300°F) 5 seconds 16 seconds

Obviously these figures indicate that the asphalt should not be mopped very far ahead of the roll, and that the felt / membrane should be applied promptly.

Although it is very important that the asphalt is sufficiently hot, care must be taken to ensure the asphalt is not overheated. The oxidation process, described earlier, produces asphalts with specific properties for roofing purposes. These properties can be altered if the asphalt is subjected to extreme temperatures for extremely long periods of time. However, ordinary asphalt heating temperatures are not damaging to the material and are required for complete fusion and strong bonding of the plies.

Bitumen heating is subject to two restraints:

  • Bitumen should not be heated to or above the actual COC Flash Point (FP). (ANSI / ASTM Test Method D-92, Test for Flash Point by Cleveland Open Cup.)
  • Bitumen should not be heated and held above the Finished Blowing Temperature (FBT) for more than four hours.

The following information should be printed on all asphalt packages or bills of lading covering bulk asphalt:

  • Softening Point Range (SP): The temperature range of the asphalt determined in accordance with ASTM Standard D-312 and D-36.
  • Flash Point (FP): The flash point of the asphalt as determined by ASTM Standard D-92.
  • Equiviscous Temperature (EVT): The temperature range, plus or minus 15°C (25°F), at which a viscosity of 125 centistokes is attained.
  • Finished Blowing Temperature (FBT): The temperature at which the blowing of the asphalt has been completed.

Four types of asphalt are presently in use for the construction of built-up roof systems:

  • Type 1 (Dead Level) asphalt is relatively susceptible to flow at roof temperatures with good adhesive and self healing properties. It is rarely used in British Columbia.
  • Type 2 (Flat) asphalt is moderately susceptible to flow at roof temperatures. It is used on roofs with slopes up to 1:12 (1" in 12").
  • Type 3 (Steep) asphalt is relatively non-susceptible to flow at roof temperatures. It is used on roofs with slopes exceeding 1:12 (1"in 12") up to 1:4 (3" in 12").
  • Type IV (Special Steep) asphalt is relatively non-susceptible to flow at roof temperatures. It is useful in areas where relatively high year-round temperatures are experienced.

Note:

Check with the membrane manufacturer's technical representative when selecting or specifying the type of asphalt to be used with a bituminous or modified bituminous flexible membrane system.)

The following chart lists the minimum and maximum softening point temperatures for the various types of asphalt.

Softening Point
Type Kind of Asphalt Minimum Maximum

Type 1 Dead Level Asphalt 60°C (140°F) 68°C (154°F)
Type 2 Flat Asphalt 75°C (167°F) 83°C (181°F)
Type 3 Steep Asphalt 90°C (194°F) 98°C (208°F)
Type IV Special Steep Asphalt 99°C (210°F) 107°C (225°F)

The asphalt materials discussed above should meet or exceed the standards set forth in CSA A123.4-M1979 for Types 1, 2, and 3 or ASTM Standard D312-78 for Type IV.

4 3.9.2 Ancillary Products

Asphalt may be adapted, by combination with other materials, to suit varied applications. Only CGSB tested products should be used or specified. These products include:

  • Cutback Asphalt Plastic Cement (CGSB 37-GP-5Ma) is composed of asphalt and solvents sometimes mixed with asbestos fibre or other mineral stabilizers to reduce sagging on vertical surfaces. CGSB defines it as being used “for filling and sealing joints in masonry, wood or metal building construction, sealing and coating flashings around buildings, embedding glass, and repairing leaks and cracks of all types and tabbing down strip shingles”. Also referred to as roofing cement or roofing mastic. (To be applied in accordance with CGSB 37-GP-11M.)
  • Asphalt Primer (CGSB 37-GP-9Ma) is defined by CGSB as being used “for priming surfaces prior to the application of roofing”, asphalt and solvents combined to form a liquid used to prime surfaces (concrete, wood and metal) receiving direct application of bituminous roof membranes. (To be applied in accordance with 37-GP-15M.)

See also Section 3.12 Roof Surfacing.