

OVERVIEW

StressPly E (Environmental) membranes feature a unique combination of rubber-modified asphalt together with selected reinforcement layers. The result is a high-strength, puncture and fatigue resistant, rubbermodified membrane designed for use as the top component in a roofing system where fire retardancy is required. StressPly membranes are made up of Styrene-Butadiene-Styrene and Styrene-Isoprene-Styrene (SBS+SIS).These rubber-modified membranes utilize KEVLAR® fibers and a dual polyester and fiberglass combination reinforcement that offers the inherent strength and heat stability of fiberglass along with the ability of polyester to conform.

StressPly E membranes can also be used in conjunction with other HPR[®] products as well as with conventional glass base sheets or fiberglass roofing felts. In addition, StressPly E membranes can be used as the top ply in a two-ply flashing system. It can also be used to repair splits, cracks, and other deteriorated areas in existing asphalt-based roofing systems. Specifications are available for either hot or coldapplied systems. The StressPly E FR Mineral sheet can be upgraded with highly-reflective Sunburst™ minerals.

Environmentally Friendly – StressPly E membranes utilize postconsumer scrap from tires in the roofing compound. In addition, StressPly E utilizes recycled boiler slag as the surfacing in non-mineral membranes diverting materials away from landfills. StressPly E also incorporates soy-based products, reducings our reliance on petroleumbased technologies. With absolutely no sacrifice in quality, StressPly E membranes maintain Garland's reputation as a manufacturer of high-performance roofing systems while benefiting the environment.

Unmatched Rubber Technology – StressPly E membranes provide unmatched durability. The SBS rubber affords superior low temperature flexibility and long-term weathering characteristics. The SIS rubber dramatically increases the overall life expectancy of the modified membrane. When SBS and SIS are combined, the result is a superior high-performance roof membrane.

Superior Strength – The StressPly E membranes are reinforced with one layer of fiberglass and one layer of polyester. The superior strength provided by the KEVLAR[®] fibers and the dual fiberglass and polyester combination resists the movement created by today's modern buildings. In addition, StressPly E membranes provide tensile strength in excess of 500 pounds per inch in the machine and cross machine direction. This translates to long-term resistance to splits and tears in the completed StressPly E membrane roof system.

Superior Fire Resistance – StressPly E FR Mineral contains a fire retardant that is added to the compound during the manufacturing process. As a result, it will maintain its fire rating for the life of the membrane. StressPly E FR Mineral has a Class A fire rating over a combustible roof deck.

APPLICATION

Hot-Applied

StressPly E membranes can be used with ASTM D 312, Type III or IV asphalt, Garland's HPR All-Temp Asphalt or modified asphalt. One or two plies of ASTM D 2178, Type IV or VI fiberglass felt are solidly bonded to the approved substrate. The StressPly E membrane is then solidly bonded to these base layers with mopping asphalt.

Cold-Applied

StressPly E membranes can also be applied in Garland's cold-applied Weatherking[®] and Green-Lock[®] membrane adhesive. One or two layers of Garland approved base sheets are applied in Weatherking or Green-Lock membrane adhesive to the approved substrate. The StressPly E membrane is then adhered to these base layers with Weatherking or Green-Lock membrane adhesive.

STRESSPLY[®] E MEMBRANES

Cap Sheet StressPly E | Technical Data Sheet

Properties		CSA A123.23 Criteria:		
		Type C, Grade 1	StressPly E Tested Value	
Thickness – mm (mils)		1.8 (70)	3.1 (121)	
Selvedge thickness - mm (mils)		1.8 (70)	2.9 (115)	
Mass per unit area – kg/m² (lbs/100 ft²)		2.2 (45)	3.5 (72)	
Back surface coating thickness (only for heat-welded sheets), min. – mm (mils)		1.0 (40)	N/A	
			Before Heat Conditioning	After Heat Conditioning
Strain energy (before and after heat conditioning), min. – kN/m (lbf/in)	At 23 ± 2°C (73.4 ± 3.6°F)	5.5 (31)	MD: 25 (141) XMD: 37 (211)	MD: 13 (77) XMD: 7 (42)
	At -18 ± 2°C (-4 ± 3.6°F)	3.0 (17)	MD: 8.8 (50) XMD: 7.2 (41)	MD: 9.5 (54) XMD: 9.5 (54)
Peak load (before and after heat conditioning), min. – kN/m (lbf/in)	At 23 ± 2°C (73.4 ± 3.6°F)	See Tested Value	MD: 101 (574) XMD: 94 (535)	MD: 57 (324) XMD: 54 (308)
	At -18 \pm 2°C (-4 \pm 3.6°F)	See Tested Value	MD: 47 (267) XMD: 53 (302)	MD: 58 (332) XMD: 57 (325)
Elongation at peak load (before and after heat conditioning), %	At 23 ± 2°C (73.4 ± 3.6°F)	See Tested Value	MD: 12% XMD: 20%	MD: 9% XMD: 8%
	At -18 ± 2°C (-4 ± 3.6°F)	See Tested Value	MD: 7% XMD: 8%	MD: 8% XMD: 7%
Ultimate elongation at 23 ± 2°C (before and after heat conditioning), %		See Tested Value	MD: 25% XMD: 19%	MD: 13% XMD: 8%
Dimensional stability, max., %		0.5%	0.0%	
Low temperature flexibility (before and after heat conditioning), max. – °C (°F)		-18 (-0.4)	MD: Pass @ -34 (-30) XMD: Pass @ -34 (-30)	MD: Pass @ -18 (-0.4) XMD: Pass @ -18 (-0.4)
Low temperature flexibility after UV weathering (Grades 1 and 2 only), max. – °C (°F)		-12 (10)	MD: N/A XMD: N/A	MD: Pass @ -12 (10) XMD: Pass @ -12 (10)
Compound stability, min. – °C (°F)		91 (195)	Pass @ 91 (195)	
Resistance to puncture		Pass	Pass	
Granule embedment (Grade 1 only), max. – g (oz)		N/A	N/A	
Moisture content, max., % *		N/A	N/A	

* Applicable only for APP-modified membranes

This product meets the requirements of CSA 123.23.

For more information, visit us at: www.garlandco.com

The Garland Company, Inc. 3800 East 91st Street Cleveland, OH 44105 FAX: 216-641-0633 Phone: 216-641-7500 Toll Free: 800-321-9336 Garland Canada Inc. 209 Carrier Drive Toronto, Ontario Canada, M9W 5Y8 FAX: 416-747-1980 Phone: 416-747-7995 Toll Free: 800-387-5991 (Only in Canada) The Garland Company UK, LTD Second Way Centre, Second Way Avonmouth, Bristol UK BS11 8DF Phone: 011 44 1174 401050 (Outside UK) Toll Free: 0800 328 5560 (Only in UK) Tests verified by independent laboratories. Actual roof performance specifications will vary depending on test speed and temperature. Data reflects samples randomly collected. ± 10% variation may be experienced. The above data supersedes all previously published information. Consult your local Garland Representative or the home office for more information.

StressPly, HPR, Weatherking and, Green-Lock are trademarks of The Garland Company, Inc., Garland Canada Inc. and The Garland Company UK, LTD. Garland Greenhouse and Sunburst are trademarks of The Garland Company, Inc. KEVLAR is a registered trademark of E.I. DuPont de Nemours and Company.

© 2024 Garland Industries, Inc.

SP E/E FR M 0324

STRESSPLY[®] E MEMBRANES

Cap Sheet StressPly E FR Mineral | Technical Data Sheet

Properties		CSA A123.23 Criteria: Type C, Grade 1	StressPly E FR Mineral Tested Value	
Thickness – mm (mils)		2.8 (110)	4.0 (156)	
Selvedge thickness – mm (mils)		1.8 (70)	3.6 (139)	
Mass per unit area – kg/m² (lbs/100 ft²)		2.9 (60)	5.0 (103)	
Back surface coating thickness (only for heat-welded sheets), min. – mm (mils)		N/A	N/A	
			Before Heat Conditioning	After Heat Conditioning
Strain energy (before and after heat conditioning), min. – kN/m (lbf/in)	At 23 ± 2°C (73.4 ± 3.6°F)	5.5 (31)	MD: 35 (197) XMD: 49 (276)	MD: 20 (113) XMD: 20 (112)
	At -18 ± 2°C (-4 ± 3.6°F)	3.0 (17)	MD: 10 (55) XMD: 10 (54)	MD: 7 (40) XMD: 7 (40)
Peak load (before and after heat conditioning), min. – kN/m (lbf/in)	At 23 ± 2°C (73.4 ± 3.6°F)	See Tested Value	MD: 92 (517) XMD: 102 (579)	MD: 59 (332) XMD: 57 (324)
	At -18 \pm 2°C (-4 \pm 3.6°F)	See Tested Value	MD: 56 (316) XMD: 63 (357)	MD: 66 (376) XMD: 61 (346)
Elongation at peak load (before and after heat conditioning), %	At 23 ± 2°C (73.4 ± 3.6°F)	See Tested Value	MD: 13% XMD: 18%	MD: 6% XMD: 6%
	At -18 ± 2°C (-4 ± 3.6°F)	See Tested Value	MD: 7% XMD: 7%	MD: 6% XMD: 6%
Ultimate elongation at 23 ± 2°C (before and after heat conditioning), %		See Tested Value	MD: 40% XMD: 41%	MD: 15% XMD: 18%
Dimensional stability, max., %		0.5%	0.0%	
Low temperature flexibility (before and after heat conditioning), max. – °C (°F)		-18 (-0.4)	MD: Pass @ -40 (-40) XMD: Pass @ -40 (-40)	MD: Pass @ -18 (-0.4) XMD: Pass @ -18 (-0.4)
Low temperature flexibility after UV weathering (Grades 1 and 2 only), max. – $^{\circ}C$ (°F)		-12 (10)	MD: N/A XMD: N/A	MD: Pass @ -12 (10) XMD: Pass @ -12 (10)
Compound stability, min. – °C (°F)		91 (195)	Pass @ 91 (195)	
Resistance to puncture		Pass	Pass	
Granule embedment (Grade 1 only), max. – g (oz)		2.0 (0.07)	1.12 (0.04)	
Moisture content, max., % *		N/A	N/A	

* Applicable only for APP-modified membranes

This product meets the requirements of CSA 123.23.

For more information, visit us at: www.garlandco.com

The Garland Company, Inc. 3800 East 91st Street Cleveland, OH 44105 FAX: 216-641-0633 Phone: 216-641-7500 Toll Free: 800-321-9336 Garland Canada Inc. 209 Carrier Drive Toronto, Ontario Canada, M9W 5Y8 FAX: 416-747-1980 Phone: 416-747-7995 Toll Free: 800-387-5991 (Only in Canada) The Garland Company UK, LTD Second Way Centre, Second Way Avonmouth, Bristol UK BS11 8DF Phone: 011 44 1174 401050 (Outside UK) Toll Free: 0800 328 5560 (Only in UK) Tests verified by independent laboratories. Actual roof performance specifications will vary depending on test speed and temperature. Data reflects samples randomly collected. ± 10% variation may be experienced. The above data supersedes all previously published information. Consult your local Garland Representative or the home office for more information.

StressPly, HPR, Weatherking and, Green-Lock are trademarks of The Garland Company, Inc., Garland Canada Inc. and The Garland Company UK, LTD. Garland Greenhouse and Sunburst are trademarks of The Garland Company, Inc. KEVLAR is a registered trademark of E.I. DuPont de Nemours and Company.

© 2024 Garland Industries, Inc.

SP E/E FR M 0324