Difference between revisions of "(Draft) Notes to PVC Standard"

Jump to: navigation, search

Difference between revisions of "(Draft) Notes to PVC Standard"

(A-5.1.3.1. Required Use of Overlays)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
  
 
__NONUMBEREDHEADINGS__
 
__NONUMBEREDHEADINGS__
__NOTOC__
 
 
<div class="row">
 
<div class="row">
  
Line 7: Line 7:
 
<div class="row">
 
<div class="row">
  
<div class="col-md-12" id="mainBodyDiv">
+
  <div class="col-md-3" style="float:right;" id="tocDiv">
 +
      <div class="noautonum">__TOC__</div>
 +
  </div> <!-- tocDiv -->
 +
 
 +
  <div class="col-md-9" id="mainBodyDiv">
 +
 
 +
<big><big>Division B - Standards</big></big><br>
 +
<big>Waterproofing Roof Systems: Thermosplastic Membranes</big><br>
 +
<hr>
 +
<big><big><big><big><big><big>RGC Standard for PVC Membrane Roof Systems</big></big></big></big></big></big>
 +
<div class="panel panel-primary">
 +
  <div class="panel-heading"><big>'''About the Standard'''</big></div>
 +
  <div class="panel-body">
 +
{{hilite | This Standard is a consolidation of requirements previously published in the Roofing Practices Manual for Flexible Membrane Roofing Systems.  It is comprised of fourteen (14) Parts that contain the requirements, guiding principles, recommendations and informative materials necessary for a roof to qualify for a '''''RoofStar 5-Year Guarantee''''', '''''RoofStar 10-Year Guarantee''''' or '''''RoofStar 15-year Guarantee'''''.  Requirements to qualify for a '''''RoofStar 15-Year Guarantee''''' are listed in each relevant Part under Section 1.  All '''''RoofStar 15-Year Guarantee''''' requirements must be read together with the General Requirements for each Part in this Standard. || 2020-July-3 }}
 +
 
 +
Notes to the Standard are hyperlinked from each Part and can be read by using the link in the Table of Contents for the Standard.  {{hilite |Highlighted text within the body of the Standard indicates revisions made within the last twelve (12) months.|| 2021-February-7 }}
 +
 
 +
This Standard follows a specific structure, incorporates defined terms, and utilizes coloured text to denote specific meaning; this is explained in [[Structure_and_Organization_of_RPM_and_Standards | Division A, Part 2, "Structure and Organization of RPM and Standards"]].  When the requirements in this Standard conflict with other resources found either in this Manual or in ''manufacturer's'' published instructions, the rules for Authority and Conflict in [[Structure_and_Organization_of_RPM_and_Standards#2.3.1.2._Authority_and_Conflict | Division A, Article 2.3.1.2.]] shall be applied.
 +
 
 +
Readers are advised to review relevant materials that can be accessed through the {{hilite | hyperlinks embedded || 2020-July-3 }} in the body of text.
 +
 
 +
<div class="col-md-12">
 +
</div>
 +
<hr>
 +
<div class="col-md-4">
 +
</div>
 +
<div class="col-md-4">
 +
:::{|
 +
|-
 +
! <div style="text-align:center;"><big><big>Table of Contents</big></big></div>
 +
|-
 +
| [[#PART_1  | Part 1 - General]]
 +
|-
 +
| [[#PART_2  | Part 2 - Supporting Structures: Decks and Walls]]
 +
|-
 +
| [[#PART_3  | Part 3 - Securing the Roof Assembly]]
 +
|-
 +
| [[#PART_4  | Part 4 - Materials]]
 +
|-
 +
| [[#PART_5  | Part 5 - Deck and Wall Overlays]]
 +
|-
 +
| [[#PART_6  | Part 6 - Air and Vapour Controls]]
 +
|-
 +
| [[#PART_7  | Part 7 - Insulation]]
 +
|-
 +
| [[#PART_8  | Part 8 - Insulation Overlays]]
 +
|-
 +
| [[#PART_9  | Part 9 - Roof Field (Membrane Systems)]]
 +
|-
 +
| [[#PART_10 | Part 10 - Perimeters and Walls]]
 +
|-
 +
| [[#PART_11 | Part 11 - Drainage]]
 +
|-
 +
| [[#PART_12 | Part 12 - Penetrations and Curbs]]
 +
|-
 +
| [[#PART_13 | Part 13 - Linear Metal Flashing]]
 +
|-
 +
| [[#PART_14 | Part 14 - The Roof as a Platform]]
 +
|-
 +
| <hr>
 +
|-
 +
| [[Notes to PVC Standard | Notes to Standard]]
 +
|-
 +
|}
  
<big><big>Division B - Standards</big></big>
+
</div>
 +
<div class="col-md-12">
 
<hr>
 
<hr>
<big><big><big><big><big>Notes to Standard for PVC Membrane Roof Systems</big></big></big></big></big>
+
<div style="text-align:center">
 +
'''First Edition''': October 18, 2019
 +
<br>'''Previous Edition''': October 20, 2023
 +
<br>'''Current Edition''': Adopted October 25, 2024
 +
<br><br>
 +
All changes to this Standard are effective<br><big>'''November 1, 2024'''</big>
 +
</div>
 +
<div style="text-align:center">
 +
{{Template:RPM Page Footer with Copyright and Current Date}}
 +
</div>
 +
</div><!-- PANEL BODY -->
 +
</div><!-- PANEL -->
 +
</div><!-- TABLE -->
 +
 
 +
<div id=PART_1></div>
 +
=Part 1 - General=
 +
==Section 1.1. Design==
 +
===1.1.1. General===
 +
====1.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
<li>In addition to the Scope described in Division A, this Standard applies to the design and construction of ''roof systems'' that are site-built, or which may be factory fabricated, in part or in their entirety.
 +
</li></ol>
 +
 
 +
====1.1.1.2. Coverage and Limitations====
 +
 
 +
<ol>
 +
<li>Coverage under the '''''RoofStar™ Guarantee''''' shall be as described in [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]]
 +
</li></ol>
 +
 
 +
====1.1.1.3. References====
 +
 
 +
<ol>
 +
<li>In this Standard, all references to
 +
<ol>
 +
<li>the "British Columbia Building Code" (the "Building Code", or the "Code"), to municipal or regional building codes or regulations, or to other standards, presume the current edition that is in force,
 +
<li>materials mean those materials expressly accepted by the '''''Guarantor''''', unless stated otherwise, and
 +
<li>measurements are shown in metric units first, followed by Imperial values (typically in parentheses; see [[Structure_and_Organization_of_RPM_and_Standards#2.1.3.2._Measurements | Division A, Article 2.1.3.2., "Measurements"]]).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====1.1.1.4. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part and the Standard:
 +
<ol>
 +
<li>''Design Authority'' means the individual or firm responsible for the issuance of ''project'' specifications and details to which the ''project'' will be bid and constructed.  When a ''Contractor'' designs a ''project'', the ''Contractor'' is deemed to be the ''Design Authority''.
 +
<li>{{hilite |''Finished roof system surface''|| 2020-February-3 }} {{hilite | means the top surface of any ''roof system'', inclusive of ballast or ''overburden''|| 2021-February-7 }}.
 +
<li>''Grade-level waterproofing system'' means an insulated or uninsulated ''system'', designed and constructed at grade with a sheet or liquid-applied membrane, to exclude water.
 +
<li>{{hilite | ''Linear metal flashing''|| 2021-June-30 }} {{hilite | means flashings cut and shaped from flat metal stock, to redirect water at roof perimeters and edges, or to control the flow of water in valleys and drainage spillways.  ''Linear metal flashings'' also protect roof membranes from weathering and damage and provide an aesthetic finish to the ''roof system''|| 2021-June-30 }}.
 +
<li>{{hilite | ''Guarantor'' (used interchangeably with '''''RGC''''') means the RCABC Guarantee Corporation, which offers the '''''RoofStar Guarantee'''''. || 2023-June-16 }}
 +
<li>{{hilite | ''Membrane system'' means the combination of field and flashing membranes which function together to waterproof underlying materials and ''systems''. || 2023-June-16 }}
 +
<li>{{hilite | ''Observer'' means a firm or person paid by the building Owner (directly, or through the '''''RGC'''''), who is independent (not a member) of the RCABC, and who is accepted by the '''''RGC''''' to provide Quality Assurance reviews during construction and after completion of the ''project'', according to the terms and conditions set out in RCABC policy || 2025-October-25 }}.
 +
<li>{{hilite | ''Vegetated Roof Assembly'' (''VRA''), used interchangeably in the "RGC Standard for Vegetated Roofs" with ''green roof'' or ''green roofing'', means a functional arrangement of interacting components, inclusive of ''vegetation'', that is designed in conjunction with a supporting ''roof assembly'', is intended to both grow and flourish, and is often installed on a roof to control the rate of rainwater discharged through a storm drainage system || 2025-October-25 }}.
 +
<li>''Waterproofing roof system'' means an insulated or uninsulated ''roof system'', designed and constructed on roofs using a sheet or liquid-applied membrane, to exclude water.  This type of ''system'' typically is installed on roof slopes less than 1:4 (3” in 12”).
 +
<li>''Water-shedding roof system'' means an insulated or uninsulated ''roof system'', designed and constructed to shed water away from a structure, not to waterproof it.  This type of ''system'' typically is installed on roof slopes greater than 1:4 (3” in 12”) but may be installed on slopes as low as 1:6 (2" in 12").
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.1.5. Reserved || 2025-October-25 }}====
 +
 
 +
===={{hilite | 1.1.1.6. Objectives || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Every ''roof system'' shall conform to the more stringent of this Standard or the Building Code or By-law having jurisdiction.
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.1.7. Responsibility for Design || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Each design of a ''roof system'' shall be undertaken by a person or persons qualified in the work concerned (See [[#3.1.3.1. Responsibility for Design | Article 3.1.3.1.]] with respect to the securement of the ''roof assembly'').
 +
<li>The ''Coordinating Registered Professional'' is responsible for ensuring the design of the ''vegetated roof assembly'' complies with all applicable building, energy, and fire codes having jurisdiction.
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.1.8. Pre-Design Requirements || 2025-October-25 }}====
 +
<ol>
 +
<li>The ''Coordinating Registered Professional'' is responsible to ensure that the ''roof assembly'' design is a multi-disciplinary enterprise that aligns with the designs for structural, plumbing, mechanical, electrical, architectural, and building envelope, together with all trades whose work intersects with the ''Contractor’s'' scope of work, to minimize out-of-sequence operations that could compromise the integrity of the completed ''roof assembly''.
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.1.9. Suitability of Design || 2025-October-25 }}====
 +
<ol>
 +
<li>The ''Design Authority'' is responsible for determining the appropriate ''roof assembly'' design and must consider (without limitation)
 +
<ol>
 +
<li>the requirements of the building code having jurisdiction,
 +
<li>the structural capabilities or limitations of the building,
 +
<li>fire resistance and the roof class requirements for the building,
 +
<li>wind loads (See [[#Part 3 - Securing the Roof Assembly | Part 3]] of this Standard),
 +
<li>the effects of nearby structures on the ''roof assembly'',
 +
<li>the potential effects of reflected heat on the ''roof assembly'',
 +
<li>''roof system'' aesthetics, and
 +
<li>maintenance requirements, including the safety of maintenance workers.
 +
</li></ol>
 +
<li>When the roof is intended as a platform to support a ''vegetated roof system'', the supporting ''roof assembly'' must be suitable for that purpose (See [[#1.1.3.1. Permitted Roof Systems | Sentence 1.1.3.1.(2)]]).
 +
</li></ol>
 +
 
 +
===1.1.2. Guarantee Term Requirements===
 +
====1.1.2.1. RoofStar 5-Year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
<li>{{hilite | In addition to Sentence (1), all ''projects'' shall comply with || 2024-October-20 }}
 +
<ol>
 +
<li>{{hilite | the ''project'' specifications and drawings, and || 2024-October-20 }}
 +
<li>{{hilite | the ''manufacturer's'' published installation requirements || 2024-October-20 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====1.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Standard for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', together with the following:
 +
<ol>
 +
<li>Each ''project'' must be designed and constructed in compliance with both the '''''RoofStar Guarantee Standards''''', together with the membrane manufacturer’s available 20-year System Warranty standards.
 +
<li>Where enhanced roof system securement is required by the manufacturer, which may exceed the securement required in a ''Tested Assembly'', an ''Assembly with Proven Past Performance'' or a custom-engineered securement, the ''project'' must comply with the higher securement requirements.
 +
<li>{{hilite | On all "new construction" ''projects'', where external access is not provided, all roofs with a field elevation greater than 7620 mm (25’) above grade must incorporate safe, appropriate access to the roof, for example by incorporating stairs and a doorway or a properly located roof hatch|| 2020-October-22 }} (<span class="recommended">Safe, appropriate access to the roof is recommended for existing buildings, to facilitate maintenance and ongoing performance reviews</span>).
 +
<li>Moisture surveys for Membrane Replacement ''projects'' must be documented and submitted in report form to the '''''Guarantor''''' for review and consideration prior to tender; documented testing means a moisture survey scan performed by a qualified person, and
 +
<ol>
 +
<li>{{hilite | at least three (3) cut tests for roof areas up to 20,000 sf (200 squares), or one (1) cut test for every 2000 sf (20 squares), whichever is more || 2020-October-22 }},
 +
<li>{{hilite | one (1) cut test for every 3000 sf (30 squares) of roof area that exceeds the first 20,000 sf (200 squares) || 2020-October-22 }}, or
 +
<li>{{hilite | one (1) cut test for each small roof area measuring no more than 200 sf (2 squares) || 2020-October-22 }}.
 +
</li></ol>
 +
<li>{{hilite | Membrane Replacement ''projects'' must incorporate new insulation overlays in keeping with the requirements published in Part 8, ''Insulation Overlays'' || 2020-October-22 }}.
 +
<li>{{hilite | Materials left in place for partial roof system replacement must be scanned for moisture || 2022-February-5 }} ([[#1.1.4.3._Partial_Roof_Replacement |Article 1.1.4.3.]]).
 +
<li>{{hilite | All roofs (new construction and replacement roofing) must be built with a minimum slope of 2% (1:50) || 2022-February-5 }} ([[#2.1.2.2._RoofStar_15-Year_Guarantee |Article 2.1.2.2.]]).
 +
<li>{{hilite | All replacement roofing must utilize crickets to enhance drainage around curbs and sleepers || 2022-February-5 }} ([[#2.1.2.2._RoofStar_15-Year_Guarantee |Article 2.1.2.2.]]).
 +
<li>{{hilite | On new construction roofs, ''curbs'' and sleepers wider/longer than 1219.2 mm (48") must incorporate crickets to improve drainage || 2022-February-5 }} ([[#7.1.2.2._RoofStar_15-Year_Guarantee |Article 7.1.2.2.]]).
 +
<li>{{hilite | An insulation overlay is required on all ''conventionally insulated roof systems'' || 2022-February-5 }} ([[#8.1.2.2._RoofStar_15-Year_Guarantee |Article 8.1.2.2.]]).
 +
<li>{{hilite | Only certain membranes will qualify for a '''''RoofStar 15-year Guarantee''''' || 2022-February-5 }} ([[#9.1.2.2._RoofStar_15-Year_Guarantee |Article 9.1.2.2.]]).
 +
<li>{{hilite | All drains and overflows require clamping rings, and overflows are required for each roof area || 2022-February-5 }} ([[#11.1.2.2._RoofStar_15-Year_Guarantee |Article 11.1.2.2.]]).
 +
<li>{{hilite | Enhanced penetration flashing requirements || 2022-February-5 }} ([[#12.1.2.2._RoofStar_15-Year_Guarantee |Article 12.1.2.2.]]).
 +
<li>{{hilite | ''Linear metal flashings'' must be fabricated from 24-gauge material || 2022-February-5 }} ([[#13.1.2.2._RoofStar_15-Year_Guarantee |Article 13.1.2.2.]]).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.2.3. Quality Control || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Notwithstanding any other requirements in this Standard, the ''Contractor'' shall
 +
<ol>
 +
<li>bid the ''project'' to meet the more stringent of this Standard or the ''project'' specifications,
 +
<li>bid the ''project'' to include only RGC-accepted systems and materials,
 +
<li>ensure that the supporting ''roof assembly'' conforms to the requirements and limitations of [[#1.1.3.1. Permitted Roof Systems | Article 1.1.3.1.]],
 +
<li>notify the ''Observer'' at least 24 hours before construction is scheduled to start or resume (72 hours notice is required for projects further away than 100 km),
 +
<li>ensure that construction conforms to this Standard and exhibits good workmanship,
 +
<li>ensure that samples, reports, shop drawings, ELD arrangements, certificates, manufacturer approvals, warranty documentation, and all other submittals are collected and provided to the '''''Guarantor''''' as required in [[#1.3.2.4. Contractor Submittals | Article 1.3.2.4.]], and
 +
<li>abide by all pertinent RCABC policies.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.2.4. Quality Assurance || 2025-October-25 }}====
 +
(See [[Notes to PVC Standard#A-1.1.2.4. | {{hilite | Note A-1.1.2.4. || 2025-October-25 }}]])
 +
 
 +
<ol>
 +
<li>Notwithstanding any other requirements in this Standard, the ''Observer'' shall
 +
<ol>
 +
<li>verify that the materials used in construction are accepted by the '''''Guarantor''''' and listed in [[Division C | Division C]] of this ''Manual'',
 +
<li>review the construction of the ''roof system'' (according to the prescribed number of observations, with consideration for the expected duration of construction) for conformance with the more stringent of
 +
<ol>
 +
<li>this Standard,
 +
<li>conditions and limitations in [[Division A | Division A]] of the RPM, as they apply,
 +
<li>the ''manufacturer’s'' published requirements,
 +
<li>the ''project'' drawings and specifications, or
 +
<li>the Building Code having jurisdiction.
 +
</li></ol>
 +
<li>review and report whether the ''Contractor'' has met the policy requirements noted in this Standard, and
 +
<li>perform cut tests or other acceptable methods, whenever required, to verify that the materials and methods of construction conform to this Standard (for example, this may be required when the ''Contractor'' has completed more than 30 squares of roofing without an observation).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===1.1.3. All Systems===
 +
====1.1.3.1. Permitted Roof Systems====
 +
(See [[Notes to PVC Standard#A-1.1.3.1. | Note A-1.1.3.1.]])
 +
 
 +
<ol>
 +
<li>This Standard applies to new construction, and to the partial or complete replacement of existing roofs, constructed as
 +
<ol>
 +
<li>''Uninsulated systems'' in which the membrane is bonded directly to the ''roof deck'' or an overlay, and is exposed to the weather and to sunlight,
 +
<li>''Conventionally insulated systems'', sometimes referred to as ''Compact Roofs'', in which the membrane is installed above insulation and other ''roof system'' materials, and is exposed to the weather and to sunlight,
 +
<li>''Protected roof systems'', also referred to as “inverted”, in which the membrane is installed beneath other ''roof system'' or protection materials (usually insulation), and is protected from exposure to the weather and from sunlight, and
 +
<li>''Modified protected roof systems'', which combine the functions and benefits of both a ''conventionally insulated system'' and a ''protected roof system'', and where the membrane is protected from exposure to the weather and to sunlight.
 +
</li></ol>
 +
<li>{{hilite | Where the roof is intended to support a ''vegetated roof system'' and qualify for a '''''RoofStar Vegetated Roof Guarantee''''', only a new roof or a roof that is specified for a complete ''roof system'' replacement will qualify for the Guarantee (See || 2025-October-25 }} [[#1.1.4.2. Complete Roof System | Article 1.1.4.2.]] {{hilite | and || 2025-October-25 }} [[#1.3.3.2. Complete Roof System Replacement | Article 1.3.3.2.]] {{hilite | for complete roof system replacement requirements.  See also [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.3.1._Permitted_Supporting_Roof_Assemblies Article 1.1.3.1.] in the “RGC Standard for Vegetated Roofs” || 2025-October-25 }}).
 +
</li></ol>
 +
 
 +
====1.1.3.2. Accessibility for Maintenance====
 +
 
 +
<ol>
 +
<li><div class="recommended">All roofs with a field elevation greater than 7620 mm (25’) above grade should incorporate access to the roof by stairs and a doorway or with a properly located roof hatch.</span>
 +
<li><span class="principles">Any hatch, ladder or mechanical unit should be located a sufficient distance away from the roof edge (setback zone) so that other fall protection measures are not required by those using or accessing this equipment</span>.
 +
<li><span class="principles">When it is not possible to situate a hatch, ladder, or mechanical unit outside the setback zone, guard rails should be designed for the roof edge to provide additional fall protection for those using or accessing such equipment</span>.
 +
<li><span class="principles">Each roof should be designed to provide safe access for maintenance of roof drains, corners, or mechanical equipment, where the roof is at least 3 m (10’) above the surface of the ground, or where a hazard to a person exists, should a fall be possible (this principle also applies to roof areas intended for regular occupancy); design elements to mitigate fall hazards should align with the Code having jurisdiction, and with the ''Workers Compensation Act Regulations'', and should include</span>
 +
<ol>
 +
<li><span class="principles">tall parapets</span>,
 +
<li><span class="principles">guardrails</span>, or
 +
<li><span class="principles">tie-off anchors</span>.
 +
</li></ol>
 +
<li>{{hilite | Where a roof is intended to support a ''vegetated roof system'', the roof must satisfy the design and pre-construction requirements published in the|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard {{hilite |“RGC Standard for Vegetated Roofs”|| 2025-October-25 }}].
 +
</li></ol>
 +
 
 +
====1.1.3.3. Membrane Integrity Testing====
 +
(See [[Notes to PVC Standard#A-1.1.3.3. | Note A-1.1.3.3.]] {{hilite | and Figure 1.1.3.3.-A || 2025-October-25 }})
 +
 
 +
<ol>
 +
<li>{{hilite | Electrical current membrane integrity testing shall conform to || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | ASTM D7877, "Standard Guide for Electronic Methods for Detecting and Locating Leaks in Waterproof Membranes", || 2023-June-16 }} or
 +
<li>{{hilite | ASTM D8231, "Standard Practice for the Use of Low Voltage Electronic Scanning System for Detecting and Locating Breaches in Roofing and Waterproofing Membranes." || 2023-June-16 }}
 +
</li></ol>
 +
<li>An electrical current membrane integrity test <u>is required</u> when anyone other than the ''Contractor'' installs ''overburden'', amenities, or equipment, (In this Standard, the term "electrical current membrane integrity test" means a test method that uses electrical current and electronic sensing technology to detect breaches in the membrane ''system'').
 +
<li>An electrical current membrane integrity test<u>is required</u> when the ''Contractor'' installs ''overburden'', amenities, or equipment, <u>but only when</u>
 +
<ol>
 +
<li>{{hilite | the total ''project'' area (footprint), inclusive of planters or other waterproofed features, exceeds 18.58 m2 (200 sf), and || 2021-October-30 }}
 +
<li>''overburden'', amenities, or equipment exceed 152.4 mm (6”) in depth{{strike| (see Figure 1.1.3-A) || 2024-October-24 }}.
 +
</li></ol>
 +
<li>{{hilite | When the ''roof assembly'' supports a ''vegetated roof system'' covered by a '''''RoofStar Guarantee''''' an electrical current membrane integrity test is optional (not required)  || 2025-October-25 }}<span class="recommended">{{hilite | but recommended || 2025-October-25 }}</span>.{{hilite | An electrical current membrane integrity test is required immediately prior to the installation of a ''vegetated roof system'' || 2025-October-25 }}.
 +
<li>An electrical current membrane integrity test must be performed by an RGC-recognized service provider {{hilite | listed in [[Division_C | Division C]]|| 2021-October-30 }}.
 +
<li>Flood testing employed as a secondary or alternative membrane integrity test <span class="recommended">is strongly discouraged for ''conventionally insulated roof systems'' because of the risk of extensive damage to ''system'' components or the building interior</span>, and is best suited for ''protected roof systems'' (See [[Notes to PVC Standard#A-1.1.3.3.(5) | Note A-1.1.3.3.(5)]]).
 +
<li>If flood testing is specified, it shall be conducted prior to the installation of insulation and roof coverings, and must be executed in keeping with ASTM D5957, "Standard Guide for Flood Testing Horizontal Waterproofing Installations".
 +
</li></ol>
 +
</li></ol>
 +
<br>
 +
::{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 1.1.3.3.-A Electronic Integrity Testing''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 1.1.3.3. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
|  [[File:Figure 1.1.3.3.-A.jpg |link=https://rpm.rcabc.org/images/2/2a/Figure_1.1.3.3.-A.jpg | 550 px]]
 +
|}
 +
 
 +
====1.1.3.4. Electronic Leak Detection====
 +
(See [[Notes to PVC Standard#A-1.1.3.4.| Note A-1.1.3.4.]])
 +
 
 +
<ol>
 +
<li>{{hilite | Electronic Leak Detection (ELD), when specified by the ''Design Authority'', shall conform to || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | ASTM D7877, "Standard Guide for Electronic Methods for Detecting and Locating Leaks in Waterproof Membranes", || 2023-June-16 }} or
 +
<li>{{hilite | ASTM D8231, "Standard Practice for the Use of Low Voltage Electronic Scanning System for Detecting and Locating Breaches in Roofing and Waterproofing Membranes." || 2023-June-16 }}
 +
</li></ol>
 +
<li>Electronic Leak Detection (ELD) is optional for ''waterproofing roof systems'', <span class="recommended">but strongly recommended</span>
 +
<ol>
 +
<li><span class="recommended">for ''projects'' where multiple trades will have access to a roof that is under construction and completed, to identify breaches in the waterproofing membrane in a timely way and avoid future costly delays</span>,
 +
<li><span class="recommended">when the ''roof assembly'' protects a sensitive occupied space (i.e., data centres, hospitals, critical infrastructure)</span>, or
 +
<li><span class="recommended">when the roof supports any type of ''overburden'', amenities, or equipment, {{hilite | including a ''vegetated roof system'' || 2025-October-25 }}</span>.
 +
</li></ol>
 +
<li>When Electronic Leak Detection is specified, it shall provide detection capabilities for all waterproofed surfaces, and should extend at least 50.8 mm (2") vertically from the ''drainage plane'' at
 +
<ol>
 +
<li>all transitions,
 +
<li>any point along the entire deck perimeter, and
 +
<li>protrusions.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====1.1.3.5. Hot Works====
 +
(See [[Notes to PVC Standard#A-1.1.3.5.| Note A-1.1.3.5.]])
 +
 
 +
<ol>
 +
<li><span class="recommended">{{hilite | The ''Design Authority'' may specify that the ''Contractor'' must maintain compliance with the RCABC Hot Works Program and consequently manage the Hot Works conducted on site</span> (See [[#1.3.2.1. Hot Works: Contractor Requirements | Article 1.3.2.1.]]) || 2021-February-7 }}.
 +
<li>{{hilite | When the ''project'' involves Hot Work, the ''Design Authority'' must either || 2021-February-7 }}
 +
<ol>
 +
<li>{{hilite |pre-approve alternate applications already written in this Standard or another applicable Standard published in this ''Manual'', when the specified application is deemed to be fire-sensitive by the ''Contractor'' as part of the risk assessment process || 2021-February-7 }}, or
 +
<li>{{hilite | provide alternate material and application requirements in the Specification for fire sensitive locations on the ''project'' || 2021-February-7 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 1.1.3.6. Variances || 2021-June-30 }}====
 +
 
 +
<ol>
 +
<li>{{hilite | When a design is unable to conform to the Standard, the ''Design Authority'' may apply to the RGC for a written Variance.
 +
<li>Application for a written Variance must be made in writing (email correspondence is common), and must|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | identify the ''project'' name and its civic address,
 +
<li>identify the '''''RoofStar Guarantee''''' number (if assigned)|| 2021-June-30 }},
 +
<li>identify the ''Contractor'' (if awarded),
 +
<li>{{hilite | articulate the nature of the design problem|| 2021-June-30 }},
 +
<li>{{hilite | identify the '''''RoofStar Guarantee''''' requirement to be varied, and state the desired modification (i.e., reduce the requirement for 203.2 mm (8") to 152.4 mm (6")), || 2023-June-16 }}
 +
<li>{{hilite | cite the reference to which the Variance will apply (i.e., Standard name, article number, sentence number, etc.)|| 2021-June-30 }}, and
 +
<li>provide design drawings, photographs, and roof plans, referencing grid lines that identify or articulate the boundaries to which the Variance will be applied.
 +
</li></ol>
 +
<li>{{hilite |Variances are issued by the RGC only to the ''Design Authority'' and will be distributed to the ''Contractor''|| 2021-June-30 }}.
 +
<li>{{hilite |A Variance may be unrestricted in its scope, or it may include one or more conditions, or a restriction in coverage, that will affect the design and construction of the ''project'', to accommodate the varied standard, but this is at the discretion of the '''''Guarantor'''''|| 2021-June-30 }}.
 +
<li>{{hilite |Variances are issued only for the ''project''-specific issue identified in the written request, and do not constitute general permission to depart from the published requirements in this Standard, for any aspect of the same ''project'' or for future ''projects'', designed or constructed by any other firm|| 2021-June-30 }}.
 +
<li>{{hilite | A Variance for a ''vegetated roof assembly'' shall conform to the requirements in [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.3.6._Variances Article 1.1.3.6.] of the “RGC Standard for Vegetated Roofs” || 2025-October-25 }}.
 +
</li></ol>
 +
 
 +
===1.1.4. Replacement and Alterations===
 +
 
 +
(The requirements in [[#1.1.3. All Systems | Subsection 1.1.3., "All Systems"]], shall be read together with the following Articles)
 +
(See [[Notes to PVC Standard#A-1.1.4.| Note A-1.1.4.]])
 +
====1.1.4.1. General Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | Unless expressly permitted otherwise in this Standard, the design for replacement roofing shall conform to the requirements for new roofing in this Standard. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
====1.1.4.2. Complete Roof System Replacement====
 +
 
 +
<ol>
 +
<li>{{hilite | Complete roof system replacement shall conform to the general requirements in [[#1.1.4.1. General Requirements | Article 1.1.4.1.]], unless expressly varied elsewhere in this Standard || 2021-June-30 }}.
 +
<li>{{hilite | ''Roof system'' replacement means the complete removal and replacement of all ''roof system'' and metal flashing materials, exclusive of the air or vapour ''control layers'', and only new replacement materials shall be installed.|| 2021-June-30 }}
 +
<li>Subject to the requirements in [[#Part 6 - Air and Vapour Controls | Part 6, "Air and Vapour Controls"]], the decision to reuse and repair an existing air or vapour ''control layer'' remains the responsibility of the ''Design Authority''.
 +
<li>''Roof system'' replacement ''projects'' are eligible to qualify for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''', subject to their respective requirements.
 +
</li></ol>
 +
 
 +
====1.1.4.3. Partial Roof Replacement====
 +
 
 +
<ol>
 +
<li>{{hilite | Partial replacement of ''roof systems'' is permitted by the '''''Guarantor''''', but coverage under the '''''Guarantee''''' is limited to new materials supplied and installed by the ''Contractor''. || 2023-June-16 }}
 +
<li>{{hilite | Retention of insulation materials in a ''roof system'' is subject to the requirements for insulation in Part 7. || 2023-June-16 }}
 +
<li>Membrane replacement, which is limited to the removal and replacement of the roof membrane and materials adhered to the membrane,
 +
<ol>
 +
<li>may be specified without a written Variance from the '''''Guarantor''''', and
 +
<li>may qualify for a '''''RoofStar 5-year Guarantee''''' and '''''RoofStar 10-year Guarantee''''', provided
 +
<ol>
 +
<li>the ''Design Authority'' is certain the existing ''roof system'' is properly secured to the existing deck structure (See [[#Part 3 - Securing the Roof Assembly | Part 3, "Securing the Roof Assembly"]]),
 +
<li>the existing ''roof system'' is demonstrably dry and free of any wet materials (wet materials must be replaced, in order to qualify for a '''''RoofStar Guarantee'''''),
 +
<li>the existing field membrane will be removed,
 +
<li>a new insulation overlay will be supplied and installed, together with a new roof membrane,
 +
<li>existing membrane flashing will be removed and replaced with new materials, and
 +
<li>the design  conforms to the requirements in this Standard for new roof construction.
 +
</li></ol>
 +
</li></ol>
 +
<li>{{hilite | To qualify for a '''''RoofStar 15-year Guarantee''''', membrane replacement ''projects'' must conform to the requirements of this Article and shall include the removal and replacement of the insulation overlay || 2023-June-16 }} (Ref. [[#1.1.2.2. RoofStar 15-Year Guarantee | Article 1.1.2.2.]]).
 +
</li></ol>
 +
 
 +
====1.1.4.4. Membrane Recovering====
 +
(See [[Notes to PVC Standard#A-1.1.4.4.| {{hilite | Note A-1.1.4.4. || 2025-October-25 }}]])
 +
 
 +
<ol>
 +
<li>Recovering (installing a new ''membrane system'' over an existing ''membrane system'')
 +
<ol>
 +
<li>may qualify for both a '''''RoofStar 5-year Guarantee''''' and a '''''RoofStar 10-year Guarantee''''', but only if it is permitted under a written Variance issued by the '''''Guarantor''''' prior to the tendering of documents (<span class="recommended">recovering is not a recommended practice and will limit the scope of coverage under the</span> '''''RoofStar Guarantee'''''), and
 +
<li>does not qualify for a '''''RoofStar 15-year Guarantee'''''.
 +
</li></ol>
 +
<li>{{hilite | Membrane recovering, which is a type of ''roof system'' replacement, does not qualify for a '''''RoofStar Vegetated Roof Guarantee''''' || 2025-October-25 }}.
 +
<li>A '''''RoofStar Guarantee''''' issued for a recovered roof is limited strictly to the value of new ''roof system'' materials; existing materials that remain in place beneath new materials are not covered by the '''''RoofStar Guarantee'''''.
 +
<li>{{hilite | All membrane recovering ''project'' specifications and drawings shall reflect and conform to the construction requirements in || 2025-October-25 }} [[#1.3.3.4. Membrane Recovering | Article 1.3.3.4.]]
 +
<li><span class="principles">{{hilite | Before proceeding with roof recovering, the ''Design Authority'' should consider|| 2022-June-17}}</span>
 +
<ol>
 +
<li><span class="principles">{{hilite | the requirements for moisture testing (described below)|| 2022-June-17}}</span>,
 +
<li><span class="principles">{{hilite | testing securement of materials to be left in place|| 2022-June-17}}</span>, and
 +
<li><span class="principles">{{hilite | the potential consequences of failure for the building and its use|| 2022-June-17}}</span>.
 +
</li></ol>
 +
<li>To qualify for a written Variance from the '''''Guarantor''''', the Variance request (See [[#1.1.3.6._Variances |Article 1.1.3.6.]])
 +
<ol>
 +
<li>must identify the type of ''roof system'' to which the Variance pertains ({{hilite |i.e., ''uninsulated''|| 2022-June-17 }}, ''conventionally insulated'', ''protected'', or ''modified protected'' ''roof system''),
 +
<li>must indicate how the new ''roof system'' will be secured (See [[#Part 3 - Securing the Roof Assembly | Part 3, "Securing the Roof Assembly"]]),
 +
<li>must specify how the existing ''roof system'' will be physically separated from other roof areas, and
 +
<li>must include the formal independent report that describes the condition of the existing ''roof system'', and which documents results from cut tests and moisture investigation that are prerequisites for a '''''RoofStar Guarantee'''''.</span>
 +
</li></ol>
 +
<li><u>{{hilite | ''Uninsulated'' and ''protected roof systems''|| 2022-June-17}}</u> presented to the '''''Guarantor''''' in a written Variance application by the ''Design Authority'' must be
 +
<ol>
 +
<li>free of blisters and breaches in the membrane,
 +
<li>independently surveyed by qualified professionals, when they are constructed on a wood ''deck'', using calibrated moisture detection equipment, and
 +
<li>cut open and probed for moisture and deterioration when any moisture is detected in a wood ''deck'' (the results of such investigation must be formally documented for review by the '''''Guarantor'''''),</span> or
 +
</li></ol>
 +
<li><u>''Conventionally insulated'' and ''modified protected roof systems''</u> presented to the '''''Guarantor''''' in a written Variance application by the ''Design Authority'' must be independently surveyed by qualified professionals using calibrated moisture detection equipment and cut tests, and the resulting survey shall be formally documented for review by the '''''Guarantor'''''.
 +
<li>All cut test surveys performed on ''conventionally insulated systems''
 +
<ol>
 +
<li>shall be independently documented for review by the '''''Guarantor''''',
 +
<li>must be performed using ASTM D7636/D7636M-11, "Standard Practice for Sampling and Analysis of Modified Bitumen Roof Systems", and
 +
<li>shall be no fewer than
 +
<ol>
 +
<li>three (3), for roof areas up to 20,000 sf (200 squares), or one (1) for every 2,000 sf (20 squares), whichever is more,
 +
<li>one (1) for every 3000 sf (30 squares) of roof area that exceeds the first 20,000 sf (200 squares), and
 +
<li>one (1) for each small roof area equal to or less than 200 sf (2 squares).
 +
</li></ol>
 +
</li></ol>
 +
<li>When a ''conventionally insulated roof system''
 +
<ol>
 +
<li>is structurally sloped, at least half (50%) of the required cut tests shall sample the roof in or near valleys, and near roof drains.
 +
<li>is structurally ''flat'', samples shall be taken near roof drains and in a random pattern across the roof. 
 +
</li></ol>
 +
<li>All wet material identified by either the independent moisture detection survey or through cut tests shall be specified for removal.
 +
</li></ol>
 +
 
 +
====1.1.4.5. Tie-ins, Additions, and Alterations to Existing Roofing====
 +
 
 +
<ol>
 +
<li>Where a new roof adjoins and ties into an existing roof, the two areas must be isolated and separated by a ''control joint'' securely attached to the structure and waterproofed in keeping with the requirements in both [[#10.1.6.2. Control Joints (Roof Dividers) | Article 10.1.6.2., "Control Joints (Roof Dividers)"]], and [[#Part 10 - Perimeters and Walls | Part 10, "Perimeters and Walls"]].
 +
<li>If ''project'' conditions do not allow for a curb joint, the ''Design Authority'' must submit an alternative design and obtain a written Variance from the '''''Guarantor''''' that permits the elimination of curb joints  (see [[#1.1.3.6._Variances |Article 1.1.3.6., "Variances"]]); any alternative design
 +
<ol>
 +
<li>must include design specifications and construction details showing a positive water cut-off that fully isolates the existing ''roof system'' from the new ''roof system'', and
 +
<li>shall show how the new ''roof system'' will be easily distinguishable from the existing ''roof system''.
 +
</li></ol>
 +
<li>{{hilite | Repairs or renovations to an existing ''roof system'' that is not covered by a '''''RoofStar Guarantee''''' do not qualify for a '''''RoofStar Guarantee''''' (the term "renovation" means the removal and replacement of, or the application of a cover to, a portion of the ''roof system''). || 2023-June-16 }}
 +
<li>{{hilite | Modifications or additions to a guaranteed roof are permissible, subject to various conditions, but must be made by a ''Contractor'' qualified to perform work under the '''''RoofStar Guarantee Program'''''. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
===1.1.5. Reserved===
 +
 
 +
==Section 1.2. Reserved==
 +
 
 +
==Section 1.3. Application==
 +
===1.3.1. Reserved===
 +
===1.3.2. All Systems===
 +
====1.3.2.1. Hot Works: {{hilite | Contractor Requirements || 2021-February-7 }}====
 +
 
 +
<ol>
 +
<li>The ''Contractor'' must maintain the requirements of the RCABC Hot Works Program, including (without limitation)
 +
<ol>
 +
<li>'''Insurance Coverage''', wherein the limits carried on the ''Contractor’s'' policy must equal or exceed the minimum requirements set by RCABC, and coverage must be unhindered by warranties that limit or exclude coverage when Hot Works is required,
 +
<li>'''Education and training''', since workers who perform Hot Works must be trained by the ''Contractor'' and kept current with acceptable methods,
 +
<li>the [https://free.bcpublications.ca/civix/content/public/bcfc2018/?xsl=/templates/browse.xsl&xsl=/templates/browse.xsl "British Columbia Fire Code"], wherein a Fire Safety Plan, preventative methods or alternative work procedures, fire watches, and the use and placement of equipment at the ''project'' site must comply with the BC Fire Code requirements for Hot Work,
 +
<li>a '''Fire Safety Plan''', whereby
 +
<ol>
 +
<li>the ''Contractor'' must assess the hazards to property and persons and produce a written Fire Safety Plan prior to the start of work, and
 +
<li>the Fire Safety Plan must be kept on the ''project'' site and must be kept current until the ''project'' is completed,
 +
</li></ol>
 +
<li>'''RoofStar Guarantee Standards''', to which the ''Contractor'' must conform, at each juncture where the interface of different membranes applications constitutes part of the Fire Safety Plan,
 +
<li>a '''Fire Watch''', in which the ''Contractor'' must, as part of the Fire Safety Plan, conduct a fire watch
 +
<ol>
 +
<li>that complies with the "British Columbia Fire Code",
 +
<li>is assigned to competent, trained personnel using suitable equipment, including the use of a hand-held infrared thermometer, and
 +
<li>is documented in a written fire watch log, and
 +
</li></ol>
 +
<li>'''Hot Works Notification''', wherein the ''Contractor'' shall notify the ''project'' authority or the AHJ, as and when required, that Hot Works will be performed.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====1.3.2.2. Workmanship====
 +
(See [[Notes to PVC Standard#A-1.3.2.2. | Note A-1.3.2.2.]])
 +
 
 +
<ol>
 +
<li>{{hilite | The ''Contractor'' must take reasonable measures to protect the ''project'' from damage by the weather, during and at the completion of {{hilite |the ''project''||2022-February-5 }}.
 +
<li>Open penetrations and flashings must be temporarily sealed off from the weather, even when other trades are responsible to make a permanent seal or install overlapping materials (See [[#4.2.1.1. Use of Accepted Materials | Article 4.2.1.1.]]) || 2021-February-7 }}.
 +
</li></ol>
 +
 
 +
====1.3.2.3. Contractor Qualifications====
 +
 
 +
<ol>
 +
<li>Supervision and installation of a RoofStar-guaranteed ''waterproofing roof system'' may be conducted only by established employees of the ''Contractor'', and every ''project'' must be supervised by a Journeyperson employee who holds a valid ticket.
 +
<li>A Journeyperson may supervise a maximum of three (3) apprentices and/or three (3) labourers (ref. RCABC Policy A-248).
 +
</li></ol>
 +
 
 +
===1.3.3. Replacement and Alterations===
 +
(The requirements in [[#1.3.2. All Systems | Subsection 1.3.2., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====1.3.3.1. General Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | Unless expressly permitted otherwise in this Standard, all replacement roofing shall conform to the requirements for new roofing in this Standard. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
====1.3.3.2. Complete Roof System Replacement====
 +
 
 +
<ol>
 +
<li>See the requirements throughout this Standard, which apply to both new construction and replacement of a ''roof system''.
 +
</li></ol>
 +
 
 +
====1.3.3.3. Partial Roof Replacement====
 +
 
 +
<ol>
 +
<li>See the requirements throughout this Standard, which apply to both new construction and replacement of a roof membrane.
 +
</li></ol>
 +
 
 +
====1.3.3.4. Membrane Recovering====
 +
(See [[#1.1.4.4. Membrane Recovering | Article 1.1.4.4.]])
 +
 
 +
<ol>
 +
<li>All wet material identified by either the independent moisture detection survey or through cut tests shall be removed in the course of construction.
 +
<li>{{hilite | When recovering <u>''uninsulated systems''</u>|| 2022-June-17 }},
 +
<ol>
 +
<li>{{hilite | deteriorated wood ''decks'' must be repaired with new material of like kind and quality; a new ''roof system'' shall not be installed on a compromised ''deck''|| 2022-June-17 }},
 +
<li>{{hilite | the existing membrane system must be|| 2022-June-17 }}
 +
<ol>
 +
<li>{{hilite | clean and free of debris, gravel, or blisters|| 2022-June-17 }}, and
 +
<li>{{hilite | cut at the perimeter change in plane to relieve any tension or distortions in the membrane|| 2022-June-17 }}, and
 +
</li></ol>
 +
<li>{{hilite | the existing field and flashing membranes must be overlaid with a mechanically attached, inorganic moisture-resistant insulation overlay board acceptable to the '''''Guarantor''''', secured to conform to the requirements in [[#Part 3 - Securing the Roof Assembly | Part 3]]|| 2022-June-17 }}.
 +
</li></ol>
 +
<li>{{hilite | When recovering <u>''conventionally insulated systems''</u>|| 2022-June-17 }}, {{hilite | the existing membrane must be cut through|| 2022-June-17 }}
 +
<ol>
 +
<li>in a grid pattern measuring no larger than 6m x 6m (approximately 20' x 20'), and
 +
<li>around the perimeter of the roof area, no more than 0.2 m (8") from the edge.
 +
</li></ol>
 +
<li>A grid-cut field membrane must be overlaid with a mechanically attached, inorganic moisture-resistant insulation overlay board acceptable to the '''''Guarantor'''''.
 +
<li>When expanded polystyrene insulation (EPS) is present in an existing ''roof system'', the existing membrane must be overlaid with at least one layer of 50.8 mm (2”) mineral wool or polyisocyanurate insulation, in combination with a RoofStar-accepted insulation overlay board (as required).
 +
<li>New ''membrane system'' materials must be properly secured to the underlying ''roof assembly''.
 +
<li>All membrane recovering ''projects'' must incorporate only new
 +
<ol>
 +
<li>strip-in flashings for roof penetrations (Ref. [[#Part 12 - Penetrations and Curbs | Part 12]]),
 +
<li>roof drains (cast-iron roof drains in usable condition are exempted from this requirement; see [[#11.3.3.2. General Requirements for Cast-iron Roof Drains | Article 11.3.3.2.]]), and
 +
<li>''linear metal flashings'' (Ref. [[#Part 13 - Linear Metal Flashing | Part 13]]).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====1.3.3.5. Tie-ins, Additions, and Alterations to Existing Roofing====
 +
 
 +
<ol>
 +
<li>Where a new roof adjoins and ties into an existing roof, the two areas must be isolated and separated by a curb joint securely attached to the structure and waterproofed in keeping with the requirements for ''control joints'' ([[#10.1.6.2. Control Joints (Roof Dividers) | Article 10.1.6.2.]] and [[#10.3.6.2. Control Joints | Article 10.3.6.2.]]).
 +
<li>If the ''Design Authority'' has obtained from the '''''Guarantor''''' a written Variance that permits the elimination of curb joints, the new ''roof system'' must be fully isolated from the existing ''roof system'' with a positive water cut-off that renders the new ''roof system'' easily distinguishable from the existing ''roof system''.
 +
</li></ol>
 +
 
 +
====1.3.3.6. Repairs and Modifications====
 +
 
 +
<ol>
 +
<li>{{hilite | When a ''roof system'' that is covered by an active (unexpired) '''''RoofStar Guarantee''''' has been damaged or otherwise requires repairs, work shall conform to the specifications of the material manufacturers, and to the requirements in this Standard, with respect to (without limitation) || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | the securement of new materials || 2023-June-16 }} ([[#Part 3 - Securing the Roof Assembly | Part 3]]),
 +
<li>{{hilite | deck or wall overlays || 2023-June-16 }} ([[#Part 5 - Deck and Wall Overlays | Part 5]]),
 +
<li>{{hilite | ''continuity'' of air and vapour controls || 2023-June-16 }} ([[#Part 6 - Air and Vapour Controls | Part 6]]),
 +
<li>{{hilite | thermal resistance and insulation overlays || 2023-June-16 }} ([[#Part 7 - Insulation | Part 7]] and [[#Part 8 - Insulation Overlays | Part 8]]),
 +
<li>{{hilite | membranes || 2023-June-16 }} ([[#Part 9 - Roof Field (Membrane Systems) | Part 9]]),
 +
<li>{{hilite | membrane flashing || 2023-June-16 }} ([[#Part 10 - Perimeters and Walls | Part 10]]),
 +
<li>{{hilite | drains || 2023-June-16 }} ([[#Part 11 - Drainage | Part 11]]),
 +
<li>{{hilite | penetrations and curbs || 2023-June-16 }} ([[#Part 12 - Penetrations and Curbs | Part 12]]), and
 +
<li>{{hilite | linear metal flashings || 2023-June-16 }} ([[#Part 13 - Linear Metal Flashing | Part 13]]).
 +
</li></ol>
 +
<li>{{hilite | Modifications to an existing ''roof system'' covered by an active (unexpired) '''''RoofStar Guarantee''''', including (without limitation) the addition of new ''curbs'', drains, or penetrations, shall conform to all the requirements in this Standard, or as otherwise stated. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
===1.3.4. Reserved===
 +
 
 
<hr>
 
<hr>
 +
<div id=PART_2></div>
 +
 +
=Part 2 - Supporting Structures: Decks and Walls=
 +
(See [[Notes to PVC Standard#A-2 | Note A-2]])
 +
 +
=={{hilite | Section 2.1. Design || 2021-June-30 }}==
 +
===2.1.1. General===
 +
====2.1.1.1. Scope====
 +
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [https://rpm.rcabc.org/index.php?title=Scope_of_RPM_and_Standards Division A, Part 1.].
 +
</li></ol>
 +
 +
====2.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
({{hilite | See Figure 2.1.3.1.-A || 2025-October-25 }})
 +
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>''Common Slope'' means a roof with a slope 1:3 (4” in 12”, or 18 degrees), up to and including 1:1 (12” in 12”, or 45 degrees).
 +
<li>{{hilite | ''Deck overlay''|| 2021-June-30 }} {{hilite | means a panel material secured to the ''supporting deck'', to render the deck surface suitable for the installation of roofing materials|| 2021-June-30 }}.
 +
<li>''Extreme Slope'' means a roof with a slope <u>greater than</u> 21:12 (21” in 12”, or 84 degrees).
 +
<li>''Flat'' (roof) means a roof with a slope less than 1:6 (2” in 12”, or 9 degrees).
 +
<li>''Low Slope'' means a roof with a slope 1:6 (2" in 12", or 9 degrees, up to but less than 1:3 (4” in 12”, or 18 degrees).
 +
<li>{{hilite | ''Sheathing'' means a rigid panel material secured directly onto framing. || 2024-January-31 }}
 +
<li>''Steep Slope'' means a roof with a slope <u>greater than</u> 1:1 (12” in 12”, or 45 degrees) up to and including 21:12 (21” in 12”, or 84 degrees).
 +
<li>{{hilite | ''Supporting deck'' ("deck")|| 2021-June-30 }} {{hilite | means the "structural surface to which a ''roof system'' is applied" (adapted from ''ASTM D1079-18 Standard Terminology Relating to Roofing and Waterproofing'')|| 2021-June-30 }}.
 +
<li>{{hilite | ''Wall''|| 2021-June-30 }} {{hilite | means a structural or non-structural element in a building that vertically separates space.  ''Walls'' may separate the outside environment from the interior conditioned space of a building, or they may separate one or more interior spaces from each other (adapted from ASTM E631-15, "Standard Terminology of Building Constructions")|| 2021-June-30 }}.
 +
<li>{{hilite | ''Wall overlay''|| 2021-June-30 }} {{hilite | means a panel material secured to the surface of a ''wall'', to render it suitable for the installation of roofing or wall cladding materials|| 2021-June-30 }}.
 +
</li></ol>
 +
</li></ol>
 +
<br>
 +
::{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:500px;" | {{hilite | '''Figure 2.1.1.2.-A Roof Slope''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 2.1.1.2. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
|}
 +
:::{| class="wikitable"
 +
|-
 +
| [[File:Figure 2.1.1.2.-A (Slopes).jpg|link=https://rpm.rcabc.org/images/4/4d/Figure_2.1.1.2.-A_%28Slopes%29.jpg| 450 px]]
 +
|}
 +
 +
===2.1.2. Guarantee Term Requirements===
 +
====2.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 +
===2.1.3. All Systems===
 +
====2.1.3.1. General Requirements for Roof Slope====
 +
(See [[Notes to PVC Standard#A-2.1.3.1. | Note A-2.1.3.1.]])
 +
 +
<ol>
 +
<li>The ''Design Authority'' must design the slope of a roof to achieve proper drainage and must take into consideration the anticipated deflection and settlement of the structure, which may interfere with drainage.
 +
{{strike| <li>Throughout this Standard, the defined terms of [[#2.1.1.2. Definitions | Article 2.1.1.2.]] apply (See Figure 2.1.3-A for an illustrated guide to the above definitions). || 2024-October-24 }}
 +
<li><span class="principles">While good drainage is desirable but not always perfectly achievable, and roof ''waterproofing systems'' generally are not affected by standing water, each ''project'' design should incorporate sufficient slope to move water off the roof surface</span>.
 +
<li>"Sufficient slope", which is subject to conditions that permit evaporation, shall mean that no standing water remains on the roof surface after a reasonable interval following a rainfall</span> (See [[Notes to PVC Standard#A-2.1.3.1.(4) | Note A-2.1.3.1.(4)]]).
 +
<li><span class="principles">Roof slope should be increased beyond the minimums published in this Standard when local climate conditions, such as rainfall frequency or severity, result in ongoing or significant ponding conditions</span> (see [[#2.1.3.2. Roof Slope for New Construction | Article 2.1.3.2.]] and [[#2.1.3.3. Roof Slope for Replacement Roofing | Article 2.1.3.3.]] for minimum requirements).
 +
<li><span class="principles">Drainage (slope toward plumbing drains) should be achieved (in descending order of best practices) with</span>
 +
<ol>
 +
<li><span class="principles">four-way slope to drain</span>,
 +
<li><span class="principles">two-way slope to drain, in combination with crickets between drains</span>,
 +
<li><span class="principles">slope to a common valley, or to gutters</span>, or
 +
<li><span class="recommended">positive sloping valleys to drains (highly recommended)</span>.
 +
</li></ol>
 +
<li><span class="recommended">The use of drain sumps, designed to isolate collected water for the drain, is {{hilite | highly || 2020-October-22 }} recommended</span>, but sloping the perimeters of a sump is not required (See also [[#11.1.3.1. Principles of Design | Article 11.1.3.1., "Principles of Design"]]).
 +
</li></ol>
 +
 +
====2.1.3.2. Roof Slope for New Construction====
 +
 +
<ol>
 +
<li>All new construction roofs must be designed and built with a slope of no less than 2% (1/4” in 12”), measured on the primary sloped planes of the roof.
 +
</li></ol>
 +
 +
====2.1.3.3. Roof Slope for Replacement Roofing====
 +
 +
<ol>
 +
<li>Replacement roof systems may qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''' without correcting poor drainage, though <span class="recommended">the elimination of ponding (standing water) is strongly recommended</span>.
 +
</li></ol>
 +
 +
====2.1.3.4. Deck Condition and Suitability for Roofing====
 +
 +
<ol>
 +
<li>The Code having jurisdiction prevails in all cases except where it is exceeded by the requirements published in this Standard.
 +
<li>Notwithstanding the requirements in this Standard, the '''''RoofStar Guarantee''''' does not cover the ''supporting deck'' material or its attachment to the building structure, which is the responsibility of the ''Design Authority'' and the building contractor.
 +
<li>The supporting ''deck'' must be dimensionally stable, resist deflection from dead and live loads, and must be capable of accommodating ''roof system'' component movement.
 +
<li><span class="principles">''Walls'', ''parapets'', ''curbs'', blocking, and penetrations should be constructed or placed by other trades prior to the commencement of roofing work</span>.
 +
</li></ol>
 +
 +
====2.1.3.5. Drainage Around Obstructions====
 +
 +
<ol>
 +
<li><span class="principles">''Curbs'' that span 2438.4 mm (96") or more when measured perpendicular to roof slope, across the direction of drainage, should be designed with a cricket to divert water around the ''curb''</span>.
 +
</li></ol>
 +
 +
===2.1.4. Reserved===
 +
===2.1.5. Roof Decks===
 +
====2.1.5.1. Steel Roof Decks====
 +
(See [[Notes to PVC Standard#A-2.1.5.1.| Note A-2.1.5.1.]]) (See also [[#Part 9 - Roof Field (Membrane Systems) | Part 9]] and [[#Part 10 - Perimeters and Walls | Part 10]] for substrate preparation requirements)
 +
 +
<ol>
 +
<li>{{hilite | Steel ''decks'' must be acceptable to the ''manufacturer'' and must conform to either || 2023-June-16 }}
 +
<ol>
 +
<li>ASTM Standard Specification A653 / A653M, "Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process": Structural (Physical) Quality, minimum Grade 33, with a design thickness of 22-gauge (0.759 mm) or greater and a minimum zinc coating designation ''Z275'', or
 +
<li>ASTM Standard Specification A792 / A792M, "Steel Sheet, Aluminum-Zinc Alloy-Coated by the Hot-Dip Process": General Requirements, minimum Grade 33, with a design thickness of 22-gauge (0.759 mm) or greater and a minimum aluminum-zinc alloy coating designation ''AZ150''.
 +
</li></ol>
 +
</li></ol>
 +
 +
====2.1.5.2. Concrete Roof Decks====
 +
(See [[Notes to PVC Standard#A-2.1.5.2.| Note A-2.1.5.2.]])
 +
 +
<ol>
 +
<li>Cast-in-place and precast concrete decks must cure for at least 28 days before receiving an adhered roof membrane ("adhered", as it is used in this requirement, means fully or intermittently bonding any membrane to the ''deck'' with an adhesive, hot asphalt (bitumen), or heat), but this limitation may be reduced if
 +
<ol>
 +
<li>both the building envelope engineer {{hilite | and the ''manufacturer'' || 2023-June-16 }} expressly permit membrane application within the first 28 days after pouring, and
 +
<li>their respective signed letters of permission are furnished to the '''''Guarantor''''' forthwith, to be included with the ''project'' record.
 +
</li></ol>
 +
{{strike| <li>{{hilite | Membranes may not be adhered to lightweight insulation concrete unless expressly permitted by the ''manufacturer''. || 2023-June-16 }} || 2024-October-24 }}
 +
<li>{{hilite | Shotcrete-formed concrete decks are not an acceptable substrate for the application of sheet membranes. || 2023-June-16 }}
 +
</li></ol>
 +
 +
====2.1.5.3. All Wood Roof Decks====
 +
(See [[Notes to PVC Standard#A-2.1.5.3.| Note A-2.1.5.3.]])
 +
 +
<ol>
 +
<li>Wood decks
 +
<ol>
 +
<li>must conform to the material requirements of the Code (see "British Columbia Building Code", Division B, Part 9, [https://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp9s923 Article 9.23.16.2.. "Material Standards"]),
 +
<li>shall be free of loose knots or cracks,
 +
<li>{{hilite | shall have a moisture content acceptable to the ''manufacturer'' (for self-adhered or adhered membranes, moisture content shall not exceed 19%; Ref. Canadian Wood Council, || 2023-October-28 }} [https://cwc.ca/en/why-build-with-wood/durability/durability-hazards/moisture-and-wood/ "Moisture and Wood"]), and
 +
<li>{{hilite |shall be secured to other supporting structural elements of the building in keeping with the published requirements of the Code having jurisdiction || 2021-February-7 }}; specifying the structural suitability of fasteners is the responsibility of the ''Design Authority''.
 +
</li></ol>
 +
<li>Differential edge movements or deflection exceeding 1/360 of the span must be prevented
 +
<ol>
 +
<li>by constructing the ''deck'' with tongue-and-groove plywood, and supporting the non-grooved edges with joists or solid blocking, or
 +
<li>by supporting butt joints at unsupported edges with solid blocking.
 +
</li></ol>
 +
<li>{{hilite | All mass timber or wood board ''decks'' must be covered with a properly secured, suitable overlay to || 2021-February-7 }}
 +
<ol>
 +
<li>ensure the integrity of the membrane as mass timber elements contract and expand, and
 +
<li>{{hilite | protect membranes from wood sap or ''deck'' surface irregularities and protruding fasteners; plywood and non-veneered panel ''decks'' are exempted from this requirement || 2021-February-7 }}.
 +
</li></ol>
 +
<li>Securement of overlaid sheathing shall conform to the requirements for wood ''decks'' in this Part.
 +
<li><span class="principles">All types of wood ''decks'' should be roofed promptly after installation</span>.
 +
</li></ol>
 +
 +
====2.1.5.4. Plywood Roof Decks====
 +
 +
<ol>
 +
<li><span class="principles">Plywood panels should conform to CSA 0121, “Douglas Fir Plywood”, CSA 0151, “Canadian Softwood Plywood”, or CSA 0153, “Poplar Plywood”</span>, but in any event must conform to the requirements published in the Code having jurisdiction (See [[Notes to PVC Standard#A-2.1.5.4.(1)| {{hilite | Note A-2.1.5.4.(1) || 2024-October-20 }}]]).
 +
<li>{{hilite | All plywood decks (notwithstanding the minimum requirements for plywood used to overlay mass timber and wood board ''decks''; see || 2023-June-16 }} [[#2.1.5.5. Mass Timber Roof Decks | Article 2.1.5.5.]], [[#2.1.5.6. Non-veneered Panel Roof Decks | Article 2.1.5.6.]], and [[#2.1.5.7. Wood Board Roof Decks | Article 2.1.5.7.]]) {{hilite | shall be constructed to conform to the "British Columbia Building Code" for either Part 3 or Part 9 buildings, and shall be || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | at least 12.7 mm (1/2”) thick, unless exceeded by the specified securement design || 2023-June-16 }} (Ref. [[#Part 3 - Securing the Roof Assembly | Part 3, "Securing the Roof Assembly"]]),
 +
<li>{{hilite | free of loose knots and cracks, which are considered defects and must be covered with sheet metal, mechanically fastened in place, || 2023-June-16 }}
 +
<li>{{hilite | securely fastened to roof framing, and installed so that the surface grain (plywood) runs at right angles to the roof framing, || 2023-June-16 }}
 +
<li>{{hilite | properly gapped between panels, and || 2023-June-16 }}
 +
<li>{{hilite | fully supported along all panel edges. || 2023-June-16 }}
 +
</li></ol>
 +
<li>When a plywood ''deck'' is intended to support a ''protected roof system'' and a ''Vegetated Roof System'',
 +
<ol>
 +
<li>{{strike| <span class="recommended">the plywood should be marine-grade T&G material at least 19.05 mm (3/4”) thick</span> || 2024-October-24 }}<span class="principles">{{hilite | the ''deck'' and any vertical planes that contact the ''vegetated roof system'' should be pressure-treated tongue-and-groove plywood at least 19.05 mm (3/4”) thick, but when the existing ''deck'' and adjoining ''wall'' surfaces are untreated wood, they should be overlaid with no less than one layer of an RGC-accepted deck overlay panel listed in [[Division C]] of this ''Manual'' || 2025-October-25 }}</span> (See [https://rpm.rcabc.org/index.php?title=Notes_to_VRA_Standard#A-2.1.5.1. Note A-2.1.5.1. Suitability of Roof Deck] in the "RGC Standard for Vegetated Roofs"), and
 +
<li>the ''Design Authority'' shall be responsible to calculate the anticipated live and dead loads of the ''system'' and design suitable approaches to mitigate deflection.
 +
</li></ol>
 +
</li></ol>
  
(Notes are explanatory and non-binding, each provided to support the requirements, guiding principles and recommendations of the Standard.)
+
====2.1.5.5. Mass Timber Roof Decks====
 +
(See [[Notes to PVC Standard#A-2.1.5.5.| Note A-2.1.5.5.]])
  
 +
<ol>
 +
<li>Mass timber decks, which include cross-laminated timbers (CLT), nail-laminated timbers (NLT), dowel-laminated timbers (DLT), and traditional glue-laminated timbers (Glulam), {{hilite | are acceptable to the '''''Guarantor''''' and do not require an overlay, but when an overlay is required by the ''manufacturer'' it must be || 2023-October-28 }} {{strike| but must be overlaid with || 2022-October-28 }} plywood conforming to the material requirements in [[#5.2.1.1. Suitability of Overlays | Article 5.2.1.1.]]
 +
<li><span class="principles">{{hilite | A mass timber ''deck'' that will support a ''vegetated roof system'' may be overlaid with a vapour permeable membrane, followed by screw-fastened marine-grade T&G plywood at least 19.05 mm (3/4”) thick, to which the ''roof system'' may be applied || 2025-October-25 }}</span>.
 +
</li></ol>
  
===<span class="reference"><big>Notes to Part 1</big></span>===
+
====2.1.5.6. Non-veneered Panel Roof Decks====
<div id=A-1.1.2.4.></div>
+
(See [[#Part 9 - Roof Field (Membrane Systems) | Part 9, "Roof Field (Membrane Systems)"]])
  
===={{hilite | '''A-1.1.2.4. Quality Assurance''' || 2025-October-25 }}====
+
====2.1.5.7. Wood Board Roof Decks====
:{{hilite | An independent ''Observer'' plays a key role in every project for which a building owner has paid a fee to qualify it for a '''''RoofStar Guarantee'''''.  Each ''Observer'' is independently trained as a professional and therefore understands the responsibilities that typically encompass the role.  However, there are additional responsibilities that come with the designation "Accepted Observer", which is particular to the '''''RoofStar Guarantee Program'''''.  To ensure that ''Observers'' fully understand the purpose, scope, and direction of the Program, the '''''RGC''''' provides training for ''Observers'', specifically geared to the '''''RGC''''''s Program.  The status of "Accepted" does not mean the ''Observer'' is contracted, or endorsed, by the '''''RGC'''''; it means that the ''Observer'' has achieved a satisfactory level of competency with the '''''RoofStar Guarantee Program''''', required by the '''''RGC''''' to be qualified to provide Quality Assurance observations (limited inspections) on behalf of an Owner || 2025-October-25 }}.
 
  
:{{hilite | Where an ''Observer'' or Observer Firm also engages in the work of consulting (providing advice and design work), the work of the consultant is considered by the '''''RGC''''' to be wholly separate from the role of ''Observer'' || 2025-October-25 }}.
+
<ol>
 +
<li><span class="principles">Wood board ''decks'' should be of sound seasoned lumber, properly secured to the supporting structure</span>.
 +
<li>{{hilite | Wood board decks must be overlaid with plywood conforming to || 2023-June-16 }} [[#5.2.1.1. Suitability of Overlays | Article 5.2.1.1.]]{{hilite | , to render the deck suitable for roofing. || 2023-June-16 }}
 +
</li></ol>
  
<div id=A-1.1.3.1.></div>
+
==={{hilite | 2.1.6. Reserved || 2024-October-20 }}===
===='''A-1.1.3.1. Permitted Roof Systems'''====
 
:Designing a good roof begins with the end in mind and an answer to the essential question, “What purpose will the roof serve?”  For example, the roof may
 
::*simply weatherproof the building interior.
 
::*provide a location for building equipment and services.
 
::*support liveable (amenity) spaces.
 
  
:The ''Finished waterproofing system'' is defined by whatever is placed on the membrane, which may be insulation, ballast, pavers or overburden. These materials will displace water and therefore affect the height of membrane flashing needed to prevent water ingress. The definition of ''Finished waterproofing system'' is illustrated below in '''Figures 1.3.2-1''' and '''1.3.2-2'''. See also Article 1.1.1.4., "Definitions".
+
===2.1.7. Walls===
<div class="col-md-12">
+
(See [[Notes to PVC Standard#A-2.1.7.| Note A-2.1.7.]])
<div class="col-md-6">
+
====2.1.7.1. General====
:{| class="wikitable"; table style="background-color:white"; border="#A9A9A9;"
+
 
|+{{hilite | <small>Figure 1.3.2-1(Conventionally Insulated roof waterproofing system)(Click to expand)</small> || 2021-February-7 }}
+
<ol>
 +
<li>{{hilite | ''Wall'' surfaces must be clean, dry, and smooth, suitable for the application of ''roof system'' materials|| 2021-June-30 }}.
 +
<li>{{hilite | Wood or steel-stud ''walls'' must be sheathed with a material suitable for adhering membranes and securing metal flashings|| 2021-June-30 }}; {{hilite | when sheathing is unsuitable, it must be overlaid with an accepted wall overlay. || 2024-January-31 }}
 +
<li>{{hilite | ''Sheathing''{{strike| , defined as a rigid panel material secured directly onto framing, || 2023-January-26 }} is considered a wall surface for the purpose of this Standard|| 2021-June-18 }}.
 +
<li>{{hilite | ''Wall'' surfaces {{hilite | suitable for || 2024-January-31 }} receiving ''waterproofing'' materials must extend beyond the maximum installed height of the ''waterproofing'', but in any event must be installed at least 203.2 mm (8”) above the|| 2021-June-18 }} ''finished roof system surface'' {{hilite | (For ''wall'' overlays, refer to [[#5.2.1.3. Overlays for Walls | Article 5.2.1.3.]])|| 2021-June-18 }}.
 +
<li>Indirect connections between walls and roofs require a ''control joint'' (See [[Notes to PVC Standard#A-10.1.6.2. | Note A-10.1.6.2.]]).
 +
</li></ol>
 +
 
 +
===2.1.8. Electrical Cables and Boxes===
 +
(See [[Notes to PVC Standard#A-2.1.8.| Note A-2.1.8.]] concerning electrical systems, fire and shock hazards, and Rule 12-022 of the Canadian Electrical Code, Part I)
 +
 
 +
====2.1.8.1. New Construction====
 +
 
 +
<ol>
 +
<li>Electrical cables, raceways or boxes shall not be installed within a ''roof assembly'' {{hilite | ('''Figure 2.1.8.1.-A''')|| 2021-February-7 }}.
 +
<li>Electrical cables, raceways or boxes shall not be installed on the underside of a ''roof assembly'', unless
 +
<ol>
 +
<li>the ''supporting deck'' structure equals or exceeds 76.2 mm (3”) in thickness {{hilite | ('''Figure 2.1.8.1.-B''')|| 2021-February-7 }}, or
 +
<li>the cables, raceways or boxes are installed and supported so there is a separation of not less than 38.1 mm (1-1/2") measured between the underside of the ''roof assembly'' and the electrical installation {{hilite | ('''Figure 2.1.8.1.-C''')|| 2021-February-7 }}.
 +
</li></ol>
 +
<li>Notwithstanding either (1) and (2), cables or raceways shall be permitted to pass through a ''roof assembly'' for connection to electrical equipment installed on the roof, provided that the passage through the roof is a part of the ''roof assembly'' design.
 +
<li><span class="principles">{{hilite | Electrical cables installed above the ''roof assembly'' should be elevated to permit proper support, roof maintenance and future replacement roofing</span>|| 2021-February-7 }} {{hilite | ('''Figure 2.1.8.1.-D''')|| 2021-February-7 }}.
 +
</li></ol>
 +
<br>
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 2.1.8.1.-A'''<br>'''Prohibited Installation of<br>Electrical Conduit'''<br>Forming Part of Sentence 2.1.8.1.(1) || 2025-October-25 }}<br><small>(Click to expand)</small> || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 2.1.8.1.-B'''<br>'''Roof Decks and Electrical Conduit<br>Installation'''<br>Forming Part of Clause 2.1.8.1.(2)(1)<br> || 2025-October-25 }}<small>(Click to expand)</small>
 
|-
 
|-
| [[File:Waterproofing Figure 1.3.2-1.jpg|link=http://rpm.rcabc.org/images/d/d4/Waterproofing_Figure_1.3.2-1.jpg | 500 px]]
+
| [[File:Figure 2.1.8.1.-A (Electrical).jpg | link=https://rpm.rcabc.org/images/f/f5/Figure_2.1.8.1.-A_%28Electrical%29.jpg  | 350 px]] || [[File:Figure 2.1.8.1.-B (Electrical).jpg | link=https://rpm.rcabc.org/images/3/32/Figure_2.1.8.1.-B_%28Electrical%29.jpg | 350 px]]
 
|}
 
|}
</div>
+
:{|
<div class="col-md-6">
+
|-
:{| class="wikitable"; table style="background-color:white"; border="#A9A9A9;"
+
|-
|+{{hilite | <small>Figure 1.3.2-2 (Protected Membrane Roof System)(Click to expand)</small> || 2021-February-7 }}
+
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 2.1.8.1.-C'''<br>'''Minimum Separation Between Roof Assembly<br>and Electrical Conduit'''<br>Forming Part of Clause 2.1.8.1.(2)(2) || 2025-October-25 }}<br><small>(Click to expand)</small> || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 2.1.8.1.-D'''<br>'''Electrical Conduit Elevated Above<br>Roof Assembly'''<br>Forming Part of Sentence 2.1.8.1.(4) || 2025-October-25 }}<br><small>(Click to expand)</small>
 
|-
 
|-
| [[File:Waterproofing Figure 1.3.2-2.jpg|link=http://rpm.rcabc.org/images/5/51/Waterproofing_Figure_1.3.2-2.jpg | 500 px]]
+
| [[File:Figure 2.1.8.1.-C (Electrical).jpg | link=https://rpm.rcabc.org/images/d/db/Figure_2.1.8.1.-C_%28Electrical%29.jpg  | 350 px]] || [[File:Figure 2.1.8.1.-D (Electrical).jpg | link=https://rpm.rcabc.org/images/e/ef/Figure_2.1.8.1.-D_%28Electrical%29.jpg | 350 px]]
 
|}
 
|}
 +
 +
<div class="col-md-12">
 +
<br>
 
</div>
 
</div>
 +
 +
====2.1.8.2. Roof Replacement and Alterations====
 +
 +
<ol>
 +
<li>If existing electrical cables or boxes do not conform to the requirements in [[#2.1.8.1. New Construction | Article 2.1.8.1.]], the ''Design Authority'' must consider the attachment of the ''roof system'' above the electrical system, and the requirements set out in [[#Part 3 - Securing the Roof Assembly | Part 3, "Securing the Roof Assembly"]].
 +
<li><span class="principles">The ''Design Authority'' should</span>
 +
<ol>
 +
<li><span class="principles">specify protection of existing electrical cables and boxes (a 4.76 mm (3/16”) steel plate may be used to minimize the possibility of fastener penetration and cutter damage, {{hilite | but protection plates may interfere with mechanical fasteners used to secure the ''roof system'' against wind uplift, even for future replacement roofing)|| 2021-February-7 }}</span>, and
 +
<li><span class="principles">provide the building owner with detailed as-built drawings that accurately map the location of electrical cables and boxes</span>.
 +
</li></ol>
 +
</li></ol>
 +
 +
==Section 2.2. Materials==
 +
===2.2.1. Material Properties===
 +
====2.2.1.1. Sheathing for Framed Walls====
 +
 +
<ol>
 +
<li>Framed wall sheathing must be
 +
<ol>
 +
<li>moisture resistant fibreglass-faced silicon treated gypsum core board, with a minimum thickness of 12.7 mm (1/2”) {{hilite | (These panels are specifically {{hilite | designed to receive roof membranes|| 2021-June-30 }} and may be installed horizontally or vertically)|| 2021-June-30 }}.
 +
<li>fibre-mat reinforced cement boards with a minimum thickness of 9.53 mm (3/8"), or
 +
<li>{{hilite | plywood, having a minimum thickness of 12.7 mm (1/2”)|| 2021-June-30 }}.
 +
</li></ol>
 +
<li>Where wall sheathing is unsuitable to receive roofing materials, refer to [[#Part 5 - Deck and Wall Overlays | Part 5, "Deck and Wall Overlays"]].
 +
</li></ol>
 +
 +
==Section 2.3. Application==
 +
===2.3.1. Guarantee Term Requirements===
 +
====2.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 +
===2.3.2. All Systems ===
 +
====2.3.2.1. Construction of Decks and Walls====
 +
 +
<ol>
 +
<li>Unless otherwise permitted and described in this Standard, the construction of deck and wall structures, and their suitability for the application of roofing materials, is the responsibility of other trades.
 +
</li></ol>
 +
 +
 +
<hr>
 +
<div id=PART_3></div>
 +
 +
=Part 3 - Securing the Roof Assembly=
 +
 +
<div style="width:150px; text-align: left;">
 +
[[File:YVR Wind 1 (short).gif | link=https://youtu.be/H2P_OYvHZBM]]
 
</div>
 
</div>
<div class="col-md-12">
+
<div style="text-align: left;">
 +
Click on the gif above to see the '''full high-definition video''', which illustrates why ''roof system'' securement requirements matter ('''NOTE''': the video shows a mechanically fastened, conventionally insulated EPDM ''roof system'' constructed to the '''''RoofStar Guarantee''''' Standard of the time (2013).  The membrane "flutter" in wind is common for this type of ''roof system'').
 
</div>
 
</div>
<div id=A-1.1.3.3.></div>
 
  
===='''A-1.1.3.3. Membrane Integrity Scans'''====
+
==Section 3.1. Design==
:An integrity scan is performed after the installation of the roof ''waterproofing system'', before any ''overburden'', equipment or amenity space is installed on top of it. An integrity scan typically uses low-voltage electrical current to detect even the smallest breaches in the roof membrane, but some waterproofing materials may require the use of other technologies to verify the roof system’s integrity. Therefore, ''Design Authority'' should specify the appropriate technology, keeping in mind the limitations of each scan and detection methodology, and of the membranes that are specified.
+
===3.1.1. General===
 +
====3.1.1.1. Scope====
 +
(See [[Notes to SBS Standard#A-3.1.1.1.| Note A-3.1.1.1.]])
  
:Neither an integrity scan nor an Electronic Leak Detection (ELD) system are considered Accepted Materials, but firms that provide these services are nevertheless specifically recognized and approved by the '''''RoofStar Guarantee Program'''''.
+
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
<li>{{hilite |This Part applies to all new roofs, and to both full and partial replacement ''roof systems''|| 2021-October-30 }}.
 +
<li>{{hilite |This Part sets out the requirements for|| 2021-October-30 }}
 +
<ol>
 +
<li>material substitution (applicable to ''Tested Assemblies''),
 +
<li>fastener and adhesive application (minimum numbers and spacing),
 +
<li>roofs that support ''overburden'', or fixed amenities and equipment, and  
 +
<li>roofs where only part of the ''system'' must be replaced.
 +
</li></ol>
 +
<li>{{hilite |''Conventionally insulated roof systems'' designed and constructed with sheet membranes must be secured using|| 2021-October-30 }}
 +
<ol>
 +
<li>{{hilite |a ''Tested Assembly'' (a membrane ''roof system'', together with a specified roof ''deck'', tested for its wind resistance capabilities using CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition)|| 2021-October-30 }}(See [[Notes to SBS Standard#A-3.1.1.1.(4)| Note A-3.1.1.1.(4)]]), or
 +
<li>{{hilite |an ''Assembly with Proven Past Performance'' (an existing, representative ''roof system'', together with a specified roof ''deck'', which is used as a “proven” pattern for securing a new ''roof system'' on the building under consideration; see [[#3.1.4.3. Specifying an Assembly with Proven Past Performance | Article 3.1.4.3.]])|| 2021-October-30 }}.
 +
</li></ol>
 +
<li>{{hilite |When neither of the foregoing options is available to the ''Design Authority'' to conform to the Code, the ''roof system'' must be secured using a custom engineered design (See [[#3.1.4.4. Specifying a Custom-engineered Securement Design | Article 3.1.4.4.]])|| 2021-October-30 }}.
 +
</li></ol>
  
<div id=A-1.1.3.3.(5)></div>
+
===={{hilite | 3.1.1.2. Intent || 2021-October-30 }}====
 +
(See [[Notes to SBS Standard#A-3.1.1.2. | Note A-3.1.1.2.]])
  
===='''A-1.1.3.3.(5) Flood Testing'''====
+
<ol>
:{{hilite | Flood testing is a method employed to visually check a membrane for leaks; it involves flooding a finished membrane area to a depth not exceeding 100 mm (4"), and leaving the area flooded for a standard period (24 to 48 hours).  The test is predicated on the assumption water under hydro-static pressure will present on the underside of the membrane if any breaches are present through which even a molecule of water can pass. ASTM D5957, ''Standard Guide for Flood Testing Horizontal Waterproofing Installations'', is the commonly accepted method for conducting membrane integrity flood tests. || 2023-June-16 }}
+
<li>The requirements in this Part intend to support and conform to or exceed the Building Code.
 +
</li></ol>
  
:{{hilite | ''Protected roof systems'' are best suited for flood testing. The membrane is usually installed directly above the roof ''deck'', and if water leaks through the membrane, the leak may be seen from below (this is less likely on a concrete ''deck'', simply because water will not present unless it has a pathway through the deck (a crack, for example); and even then, water may not present for several days after the conclusion of the test. Conventionally insulated roof systems are not good candidates for flood testing, for several reasons. First, the integrity of an air or vapour membrane (installed at or near deck level) will likely prevent water from presenting, in which case no one will ever know if the membrane leaked or was water-tight.  Second, if the membrane is not water-tight but a leak cannot be detected visually, water entering the ''roof system'' could cause considerable damage to ''roof system'' components such as insulation. || 2023-June-16 }}
+
===={{hilite | 3.1.1.3. Limit of Liability under RoofStar Guarantee || 2021-October-30 }}====
  
<div id=A-1.1.3.4.></div>
+
<ol>
 +
<li>{{hilite |Notwithstanding [[#3.1.1.2. Intent | Article 3.1.1.2.]], the materials presented herein are based on an interpretation of the Code and are not the Code itself; therefore, the reader is responsible to exercise good judgement, and to read, understand and comply with the Code, as and how it applies to the reader’s particular ''project'' and its design requirements.
 +
<li>Where the Code can be shown to exceed the requirements, guiding principles, and recommendations of this Part or any related Part in this Standard, the Code shall prevail|| 2021-October-30 }}.
 +
<li>{{hilite |Compliance with this Part or the Code does not guarantee that a roof will not succumb to forces exerted by wind, and therefore neither the '''''Guarantor''''' nor the ''Contractor'' will accept any responsibility for damage to, or failure of, a roof system caused by wind; too many variables beyond the control of this Standard affect the wind resistance performance of a ''roof system'', including (without limitation)|| 2021-October-30 }}
 +
<ol>
 +
<li>{{hilite | the ''continuity'' or discontinuity of air and vapour ''control layers'' of the entire building enclosure|| 2021-October-30 }},
 +
<li>{{hilite | openings in the building (windows and doors, which are often occupant-controlled and not static)|| 2021-October-30 }}, and
 +
<li>{{hilite | wind strength, which may exceed the codified numeric wind speed values used to calculate wind resistance for the ''roof system'' || 2021-October-30 }} (Ref. "British Columbia Building Code 2024", Division B, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=762 Appendix C, "Table C-1"]).
 +
</li></ol>
 +
</li></ol>
  
===='''A-1.1.3.4. Electronic Leak Detection'''====
+
====3.1.1.4. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
:Electronic Leak Detection (ELD) utilizes low-voltage electrical current, typically conducted through wires installed in a grid pattern.  ELD technologies are used in response to a leak, to isolate its location in order to minimize investigation time and material removal. This can benefit a building owner who will have to bear the costs of demolition or overburden removal when the standard limits of coverage afforded by the '''''RoofStar Guarantee''''' are exceeded by the ''Project'' design and construction.  ELD technologies may be passive (installed but not monitored) or actively monitored (by the installer, through real-time data collection).
 
  
<div id=A-1.1.3.5.></div>
+
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>''CSA Standard'' means the CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition).
 +
<li>{{hilite | ''CSA VRA Standard'' means the CSA-A123.24, “Standard test method for wind resistance of vegetated roof assembly” || 2025-October-25 }}.
 +
<li>''Registered Professional'' has the same meaning as that used in the "British Columbia Building Code 2024", Division C, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=836 Article 2.2.1.2., "Structural Design"].
 +
<li>''Specified Wind Load'' means the calculated force of wind exerted on the roof of a specific building, according to the requirements in the "British Columbia Building Code 2024", Division B, Part 4, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=496 Section 4.1., "Structural Loads and Procedures"].
 +
<li>{{hilite | ''System of securement'' means a specific pattern of mechanical fasteners or adhesives, including specific materials or brands, size, and spacing. || 2023-June-16 }}
 +
</li></ol>
 +
</li></ol>
  
===='''A-1.1.3.5. Hot Works'''====
+
===3.1.2. Guarantee Term Requirements===
:{{hilite | When any portion of a ''waterproofing system'' is installed with heat, the work is classified as Hot Works. Some tools used in the course of Hot Works can ignite combustible materials, and some building environments are more sensitive to fire than others, such as a building containing or in close proximity to flammable liquids. Hot works may occur during || 2021-February-7 }}</span>
+
====3.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
::*{{hilite | tear off (sparks)|| 2021-February-7 }}.
 
::*{{hilite | ''deck'' preparation (drying wet surfaces)|| 2021-February-7 }}.
 
::*{{hilite | cold temperatures (warming materials or surfaces)|| 2021-February-7 }}.
 
::*{{hilite | equipment use (sparks within electrical tools, or from cutting, drilling, or grinding metal, concrete, stone, or other hard surface products)|| 2021-February-7 }}.
 
::*{{hilite | membrane installation (with the means of a kettle, hot-air welder, or open flame torch)|| 2021-February-7 }}.
 
;:
 
  
<div id=A-1.1.4.></div>
+
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
  
===='''A-1.1.4. Alterations and Additions'''====
+
====3.1.2.2. RoofStar 15-Year Guarantee====
:As a roof ages, is neglected or is damaged, it may lose its ability to perform reliably and effectively, necessitating replacement.  Replacement roofing, also referred to as "re-roofing," whether made in whole or in part, should be undertaken with the Quality Assurance and Quality Control provided for under the '''''RoofStar Guarantee Program'''''.  Regardless of the approach to replacement roofing, the existing deck structure must meet the pullout resistance rating for mechanical fasteners and must be capable of supporting all dead and live loads.  Furthermore, the deck must be capable of supporting any additional dead loads of the new roof system.
 
  
:Three types of replacement roofing are contemplated and permitted (with varying degrees of limitations and conditions) under the '''''RoofStar Guarantee Program''''':
+
<ol>
:*'''System replacement''' - removal and replacement of all ''roof system'' components, except for the supporting deck structure.
+
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
:*'''Membrane replacement''' – removal and replacement of the roof membrane, while retaining existing ''roof system'' components (i.e., insulation, ballast).
+
<ol>
:*'''Recovering''' - installation of a new membrane over an existing membrane, while retaining some or all of the other ''roof system'' materials (NOTE: Recovering is permitted only with a written Variance issued by the '''''Guarantor''''').
+
<li>{{hilite |comply with the higher securement requirements when enhanced ''roof system'' securement is required by the membrane manufacturer, to meet their system warranty requirements ("enhanced securement" may exceed the securement stated or specified in a ''Tested Assembly'', an ''Assembly with Proven Past Performance'', or a custom-engineered design; see also [[#1.1.2.1. RoofStar 5-Year and RoofStar 10-year Guarantee | Article 1.1.2.1., "RoofStar 15-Year Guarantee"]], for further general requirements|| 2020-October-22 }}).
 +
</li></ol>
 +
</li></ol>
  
:Qualifying and construction conditions and limitations for each of these replacement options are outlined in Subsection 1.1.4. Other conditions and limitation may be determined by the '''''Guarantor''''' subject to the nature and specifications of the replacement roofing ''project''.
+
===={{hilite | 3.1.2.3. RoofStar Vegetated Roof Guarantee || 2025-October-25 }}====
  
<div id=A-1.1.4.4.></div>
+
<ol>
 +
<li>To qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the supporting ''roof assembly'' shall
 +
<ol>
 +
<li>comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''',
 +
<li>be acceptable to the manufacturer as support for a ''vegetated roof system'', and
 +
<li>comply with the related requirements in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”].
 +
</li></ol>
 +
</li></ol>
  
===='''A-1.1.4.4 Membrane Recovering'''====
+
===3.1.3. All Systems===
:{{hilite | When membrane replacement is not practical, membrane recovering is an acceptable method for renewing the weatherside surface of a ''waterproofing roof assembly'' when most if not all of the other components (insulation and the air barrier) remain undamaged and undisturbed. It does not require the removal of any ''roof system'' components, but it does require an assessment beforehand, to determine the integrity of the existing ''roof system''. A '''''RoofStar Guarantee''''' cannot respond to existing water inside the system, which is why they must be surveyed for moisture by a qualified professional, and the report provided to the '''''Guarantor''''' as part of the submission for a Variance. However, because the requirements in Part 3 apply to both new and replacement roofing, securing new materials on top of existing materials becomes challenging and critical || 2025-October-25 }}.
+
====3.1.3.1. Responsibility for Design====
  
:{{hilite | Every ''roof assembly'' constitutes a chain of connected parts and that 'chain of connectivity' is predicated on the integrity of the bonds between each adjoining component.  Because aged adhesives in ''conventionally insulated roof assemblies'' may not provide the hold-down strength they once did when they were new, the '''''RGC''''' requires the ''Design Authority'' to conduct adhesion tests to confirm that the existing assembly exceeds the Code requirement for design loads.  If that cannot be achieved, mechanical fastening is required to provide a direct connection to the structural deck || 2025-October-25 }}.  
+
<ol>
 +
<li>The ''Design Authority'' is responsible for determining ''Specified Wind Loads'' for each ''roof system'' and each roof area of a ''project'', including roofs that support ''Vegetated Roof Systems'' or any other ''overburden'', amenities, or equipment.
 +
<li>Acceptance of a roof for a '''''RoofStar Guarantee''''' is predicated on the assumption that the ''Design Authority'' has performed Due Diligence with respect to ''Specified Wind Loads'' and has provided the ''Contractor'' with sufficient information to construct a ''roof system'' that complies with the Code.
 +
</li></ol>
  
:{{hilite | Cutting the existing membrane is also necessary to relieve diaphragm-like tension that could distort the new ''roof system'', particularly at the perimeter. It also allows any existing moisture in the roof system to move around and prevents the existing membrane from acting as an intermediate vapour retarder that could adversely affect the performance of the recovered ''roof system'' || 2025-October-25 }}.
+
====3.1.3.2. Calculation of Specified Wind Loads====
  
<div id=A-1.3.2.2.></div>
+
<ol>
 +
<li>A ''registered professional'' "skilled in the work concerned" must perform or validate the calculation of ''Specified Wind Loads'' (See the "British Columbia Building Code 2024", Division C, Part 2, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=836 Article 2.2.1.2., "Structural Design"]), using
 +
<ol>
 +
<li>the [https://nrc.canada.ca/en/research-development/products-services/software-applications/wind-load-calculators-roof-cladding-vegetated-roof-assembly "Wind Uplift Resistance Calculator"] (formerly "Wind-RCI"), or
 +
<li>the formulae and procedures in the "British Columbia Building Code 2024", Division B, Part 4, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=529 Subsection 4.1.7.,"Wind Load"] (See [[Notes to SBS Standard#A-3.1.1.1. | Note A-3.1.1.1.]]).
 +
</li></ol>
 +
<li>Each roof area, at each level (elevation), shall be divided into three principal roof zones ({{hilite | '''Figure 3.1.3.2.-A''' || 2025-October-25 }}), and the ''Design Authority'' shall be responsible for calculating the ''Specified Wind Loads'' for each zone (Ref. the "British Columbia Building Code 2024", Division B, Part 4, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=535 Article 4.1.7.6., "External Pressure Coefficients for Low Buildings"]).
 +
<li>Roof zones are defined in this Standard as follows:
 +
<ol>
 +
<li>'''Field (F)''' – the interior of the roof bounded by the ''Edge'' and the ''Corners''.
 +
<li>'''Edge (E)''' – the perimeter zone (minus the corners), measured as either 10% of the smallest building width ("least horizontal dimension"), or 40% of the building height, whichever is less. Notwithstanding the requirements in the "British Columbia Building Code", the ''Edge'' zone shall not be less than 2.0 m (7').
 +
<li>'''Corner (C)''' – part of the perimeter but not less than 2.0 m x 2.0 m (7’ x7’) in size, the ''Corner'' area is defined by the ''Edge'' in both directions at the corners.  Where the roof geometry includes an inside corner, the ''corner'' zone dimensions shall be the same as those for an outside corner, applied equidistant in each direction from the inside corner ({{hilite | '''Figure 3.1.3.2.-A''' || 2025-October-25 }}).
 +
</li></ol>
 +
<br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 3.1.3.2.-A Principal Roof Zones''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.1.3.2. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:Figure 3.1.3.2.-A (Wind Zones).jpg|link=https://rpm.rcabc.org/images/9/9a/Figure_3.1.3.2.-A_%28Wind_Zones%29.jpg | 400 px]]
 +
|}
 +
<br>
 +
<li>A roof area that is divided into smaller segments by means of ''control joints'' (roof dividers, i.e., a fire wall) or ''expansion joints'', shall be considered one roof area for the purpose of calculating the ''Specified Wind Loads'', unless the height of a ''control joint'' or ''expansion joint'' exceeds 1 m (39"), in which case the ''Specified Wind Loads'' for each roof segment shall be calculated separately (See {{hilite | '''Figure 3.1.3.2.-B''' || 2025-October-25 }}).
 +
<li>When a building is designed with multiple roof levels (at different elevations), and the roofs are adjacent each other (having a common wall), the ''Specified Wind Loads'' for each level, and for each roof area on that level, shall be calculated separately from loads for the adjacent level, unless the elevation difference between adjacent roof levels is less than 1.524 m (5’) (See {{hilite | '''Figure 3.1.3.2.-B''' || 2025-October-25 }}).
 +
<li>When the shape of a single-level roof varies in width or length, the smallest width dimensions shall be used in the calculation of ''Specified Wind Loads'' (Ref. “minimum effective width” as defined in the "British Columbia Building Code", Division B, Part 4, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=530 Article 4.1.7.2., "Classification of Buildings"]).
 +
<br><br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 3.1.3.2.-B Roofs Adjacent to Each Other''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.1.3.2. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:Figure 3.1.3.2.-B (Wind Zones).jpg|link=https://rpm.rcabc.org/images/6/64/Figure_3.1.3.2.-B_%28Wind_Zones%29.jpg | 550 px]]
 +
|}
 +
<br>
 +
<li>When a roof area intersects the corner of a wall, the ''Edge'' zone on either side of the wall corner must be treated as a roof ''Corner'' (2 x C) ({{hilite | '''Figure 3.1.3.2.-B''' || 2025-October-25 }}).
 +
<li>When an existing roof system is specified for partial replacement, the ''Design Authority'' must
 +
<ol>
 +
<li>calculate the ''Specified Wind Loads'' for the roof,
 +
<li>determine if securement of the remaining roof components (left in situ) is sufficient to resist the ''Specified Wind Loads'',
 +
<li>determine a suitable method of securement or have the ''system'' of securement engineered, and
 +
<li>calculate and design securement for any ''overburden'', amenities, or equipment.
 +
</ol></li>
 +
<li><span class="principles">''Roof systems'' should be designed in conjunction with the electrical systems for the building, to avoid unnecessary interference with ''roof system'' securement</span> (See also [[#2.1.8. Electrical Cables and Boxes | Subsection 2.1.8., "Electrical Cables and Boxes"]]).
 +
<li>Mansards are a ''roof system'' and are therefore subject to the requirements in this Part.
 +
<li>Securement of an adjoining ''water-shedding system'' shall be made in accordance with the requirements in the applicable Standard.
 +
<li>{{hilite | Wind loads for a ''roof assembly'' supporting a ''vegetated roof system'' shall be determined in accordance with the requirements of the Building Code and || 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#3.1.3.3. Resistance to Specified Wind Loads | Article 3.1.3.3.]] {{hilite | of the “RGC Standard for Vegetated Roofs”|| 2025-October-25 }}.
 +
{{strike| <li>''Vegetated Roof Systems'' specified for || 2024-October-24 }}
 +
<ol>
 +
{{strike| <li>buildings up to 20 m (65') in height shall be designed to resist ''Specified Wind Loads'' using the [https://nrc.canada.ca/en/research-development/products-services/software-applications/wind-load-calculators-roof-cladding-vegetated-roof-assembly "Wind Load Calculator for Vegetated Roof Assembly"] or, in the alternative, another method that is its equal or superior, and || 2024-October-24 }}
 +
{{strike| <li>buildings greater than 20 m (65') in height shall be designed to resist '' Specified Wind Loads'' using methods that are acceptable to the ''Authority Having Jurisdiction'' (AHJ). || 2024-October-24 }}
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
  
===='''A-1.3.2.2. Workmanship'''====
+
====3.1.3.3. Resistance to Specified Wind Loads====
:While integrity and functionality of a new roof or grade-level waterproofing is the foundation of a '''''RoofStar Guarantee''''', it is no less important to ensure that the finished ''project'' exhibits excellent workmanship.
 
  
===<big><span class="reference">Notes to Part 2</span></big>===
+
<ol>
<div id=A-2></div>
+
<li>The wind uplift resistance capabilities of the selected ''roof system'' must equal or exceed the ''Specified Wind Loads'' calculated for each roof zone to which the ''system'' will be applied (see [[#3.1.3.2. Calculation of Specified Wind Loads | Article 3.1.3.2.]]).
 +
<li>Engineered designs to resist wind uplift may refer to the "British Columbia Building Code", Div. B, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=764 Appendix C, "Table C-2"], which lists various types of loads, including wind loads, for specific reference locations throughout the province.
 +
</li></ol>
  
===='''A-2 Scope and Application of Part 2'''====
+
====3.1.3.4. Resistance to Other Loads====
:Part 2 addresses ''deck'' and ''wall'' materials, deck slope, ''deck'' and ''wall'' conditions, and the methods by which intersecting systems such as electrical wiring can be executed safely and in alignment with the interests of the '''''Guarantor'''''.  It does not address construction or installation of ''decks'' and ''walls'', which is the work of other trades.  For the preparation of a ''roof deck'' to render a deck or wall suitable for roofing, refer to Part 9 and Part 10, in the articles pertaining the substrate preparation.
 
  
<div id=A-2.1.3.1.></div>
+
<ol>
 +
<li>In addition to its capacity to resist ''Specified Wind Loads'', the ''roof system'' must be capable of resisting or accommodating
 +
<ol>
 +
<li>all anticipated live and dead loads, including (without limitation) other environmental loads, such as rain and snow, expected for the building’s size and location,
 +
<li>gravity ("drag") loads,
 +
<li>{{hilite | loads from ''overburden'' || 2023-June-16 }} (See [[#Part 14 - The Roof as a Platform | Part 14]]), and
 +
<li>thermal expansion and contraction of the ''roof system'' components.
 +
</li></ol>
 +
<li>{{hilite | Where the roof is designed to support a ''vegetated roof system'', consideration for other loads shall conform to the requirements in|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#2.1.4.1._Structural_Loads {{hilite |Article 2.1.4.1.|| 2025-October-25 }}] {{hilite |of the “RGC Standard for Vegetated Roofs”|| 2025-October-25 }}.
 +
</li></ol>
  
===='''A-2.1.3.1. General Requirements for Roof Slope'''====
+
====3.1.3.5. Submittals====
:Roof slope may be achieved either by designing the roof structure with sloped ''decks'' ("structural slope"), or by introducing slope with tapered board insulation (built into the roof system).
 
  
<div id=A-2.1.3.1.(4)></div>
+
<ol>
 +
<li>{{hilite | The '''''Guarantor''''' must receive from the ''Contractor'', prior to construction of the ''project'' and to document the ''roof system'' record || 2024-June-15 }},
 +
<ol>
 +
<li>{{hilite | a Tested Assembly report supplied or endorsed by a ''manufacturer'', including documentation of the substitution of any materials identified in that test report || 2024-June-15 }},
 +
<li>{{strike| The ''Design Authority'' must submit documentation || 2023-June-15 }} {{hilite | a letter || 2024-June-15 }} in support of an {{hilite | ''Assembly with Proven Past Performance'' || 2025-October-25 }}{{strike| "System with Proven Past Performance" || 2024-October-24 }}, as required in [[#3.1.4.3. Specifying an Assembly with Proven Past Performance | Article 3.1.4.3.(2)]], {{hilite | or || 2024-June-15 }}
 +
<li>{{hilite | a custom-engineered ''system'' for securing the ''roof assembly'' || 2024-June-15 }}.
 +
</li></ol>
 +
</li></ol>
  
===='''A-2.1.3.1.(4) Sufficient Slope'''====
+
===3.1.4. Conventionally Insulated Roof Systems===
:The term, "sufficient slope", is a reference to a nominal value applied to the primary sloped planes of a roof and is measured from the highest point on a slope to the lowest point, at the roof drain or sump edge (the term does not refer to the slope of valleys).  It is also generally a subject that concerns roofs with an exposed membrane (not covered with ballast or an ''overburden''), and generally does not apply to ''protected roof systems''.  This definition of "sufficient slope" allows for the possibility of intermittent deflections in the drainage plane, particularly in places where the underlying deck may have settled over time. 
+
(The requirements in [[#3.1.3. All Systems | Subsection 3.1.3., "All Systems"]], shall be read together with the following articles)
  
:While insufficient slope may be the suspected cause of rainwater retention (pooling) on a roof surface (commonly referred to as "ponding"), there are other factors beyond slope, such as local climate and roof maintenance, that contribute to retention. The accumulation of debris on a roof is a common reason for ponding. Very little debris (often leaf litter) is necessary to block a drain, and most ponding occurs around roof drains. Routine roof maintenance will solve most roof ponding problems. However, while maintenance is within the control of the building owners or occupants, climate is not, making it difficult, if not impossible, to determine what is "reasonable". Temperature, air movement, and relative humidity (rh) all affect the rate of evaporation. As long as the roof is debris-free, some ponding will not adversely affect a roof membrane.
+
====3.1.4.1. Securement Against Specified Wind Loads====
 +
(See [[Notes to SBS Standard#A-3.1.4.1.| Note A-3.1.4.1.]])
  
<div id=A-2.1.5.1.></div>
+
<ol>
 +
<li>New and fully replaced ''conventionally insulated systems'' shall satisfy the requirements of the "British Columbia Building Code" and this Part, and shall be (when applicable)
 +
<ol>
 +
<li>an Adhesive Applied Roof System ("AARS"),
 +
<li>a Partially Attached Roof System ("PARS"), or
 +
<li>a Mechanically Attached Roof System ("MARS"),
 +
</li></ol>
 +
which may be specified as
 +
<ol>
 +
<li>{{hilite | a ''Tested Assembly''|| 2020-July-3 }},
 +
<li>{{hilite | an ''Assembly with Proven Past Performance''|| 2020-July-3 }}, or
 +
<li>{{hilite | an ''assembly'' with custom-engineered securement|| 2020-July-3 }}.
 +
</li></ol>
 +
</li></ol>
  
===='''A-2.1.5.1. Steel Roof Decks'''====
+
====3.1.4.2. Specifying a Tested Assembly====
:Steel ''decks'' are constructed of light gauge (usually 22, 20, or 18 gauge) cold-rolled steel sections (panels) that are usually galvanized. In cross-section the panels are ribbed, with the ribs usually spaced at 150 mm (6") O.C. The ribs provide the strength and rigidity of the panels. Steel ''decks'' are generally supported by open-web steel joist framing and are welded or mechanically fastened to the framework</span>.
+
(See [[Notes to SBS Standard#A-3.1.4.2.| Note A-3.1.4.2.]])
  
<div id=A-2.1.5.2.></div>
+
<ol>
 +
<li>Only roof assemblies that have been tested by qualified facilities wholly independent of ''roof system'' manufacturers, using CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition), will be considered valid ''Tested Assemblies'', for the purposes of this Standard  (See [http://rpm.rcabc.org/index.php/CSA_A123.21_Qualified_Test_Facilities here] for a list of qualified testing agencies).
 +
<li><span class="recommended">The ''Design Authority'' is strongly encouraged to specify the application of a ''Tested Assembly'', for any design of a new or fully replaced membrane waterproofing ''roof system''</span>.
 +
<li>The ''Design Authority'' must use only the test observation readings that have been adjusted for the "Safety Factor" (CSA-A123.21, prior to  the 2019 edition) or the "Resistance Factor" (CSA-A123.21, 2019 and newer), which must equal or exceed the highest ''Specified Wind Loads'' for the roof (this adjusted value is called the ''Dynamic Uplift Resistance'', or DUR.  See {{hilite | '''Figure 3.1.4.2.-A''' || 2025-October-25 }}).
 +
<li>When a ''Tested Assembly'' report indicates only one system of securement, that system shall be applied to all roof zones; alternatively, zone-specific securement requirements may be extrapolated by a ''Registered Professional'' "skilled in the work concerned", using ANSI-SPRI WD-1, "Wind Design Standard Practice for Roofing Assemblies" (see the "British Columbia Building Code", Division B, Part 5, Notes to Part 5, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=674 A-5.2.2.2.(4)]).
 +
</li></ol>
 +
<br>
 +
::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 3.1.4.2.-A Dynamic Uplift Resistance''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.1.4.2. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:Figure 3.4.jpg|link=http://rpm.rcabc.org/images/d/d8/Figure_3.4.jpg | 250 px]]
 +
|}
  
===='''A-2.1.5.2. Concrete Roof Decks'''====
+
====3.1.4.3. Specifying an Assembly with Proven Past Performance====
:Concrete ''decks'' to which a ''roof system'' may be applied include
+
(See the "British Columbia Building Code", Division B, Part 5, Notes to Part 5, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=671 A-5.1.4.1.(5)] for an expanded explanation of the tests for "proven past performance")
:*Cast-in-place.
 
:*Pre-cast panels.
 
:*Pre-stressed panels.
 
:*Lightweight.
 
  
<div id=A-2.1.5.3.></div>
+
<ol>
 +
<li>A new ''conventionally insulated'' ''roof assembly'' (the new ''roof assembly'') may be designed using a model ''roof assembly'' as a reference (the roof ''Assembly with Proven Past Performance''), but only when
 +
<ol>
 +
<li>a ''Tested Assembly'' cannot be used,
 +
<li>the material components identified in a ''Tested Assembly'' are not accepted by the '''''RoofStar Guarantee Program''''', and the test report offers no RoofStar-accepted alternates,
 +
<li>a ''Tested Assembly'' is not available because a material or ''system'' has not been tested, or because the ''Specified Wind Loads'' exceed the capacity of an available or suitable ''Tested Assembly'',
 +
<li>the model ''roof assembly''
 +
<ol>
 +
<li>is an existing ''roof assembly'' constructed on a real, existing building (the ''model building''),
 +
<li>demonstrates resistance to negative wind loads that are the same as, or greater than, the ''Specified Wind Loads'' which the ''new roof assembly'' must be designed to resist,
 +
<li>has a history of performance equal to or longer than the expected service life of the ''new roof assembly'', and
 +
<li>is designed with only RoofStar-accepted materials that possess properties "identical or superior to those of the...assembly used as a reference" (Ref. the "British Columbia Building Code", Division B, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=670 Notes to Part 5,  Environmental Separation]),
 +
</li></ol>
 +
<li>the model building
 +
<ol>
 +
<li>is similar in dimensions, exposure, openings, and importance to the building that will support the ''new roof assembly'', and
 +
<li>is situated in conditions representative of the building that will support the new ''roof assembly'' (the term "representative" refers to conditions that include, without limitation, dynamic loads caused by proximity to other structures because of funneling or building harmonics).
 +
</li></ol>
 +
</li></ol>
 +
<li>To qualify for a '''''RoofStar Guarantee''''', a new ''roof assembly'' patterned after {{hilite | a model ''roof assembly'' and the design using a model ''roof assembly'' || 2025-October-25 }}{{strike| an ''Assembly with Proven Past Performance'' || 2024-October-25 }} must be supported with a letter of assurance provided to the '''''Guarantor''''' by the ''Design Authority'', or by the manufacturer of the ''Assembly with Proven Past Performance'', signed by the Principal or a person having the authority of the Principal, stating that the new ''roof assembly'' will resist the ''Specified Wind Loads'' calculated for the new ''roof assembly''.
 +
<li>A ''new roof assembly'' patterned after {{hilite | a model ''roof assembly'' || 2025-October-25 }}{{strike| an ''Assembly with Proven Past Performance'' || 2024-October-25 }} may be used for partial roof replacement.
 +
<li>Published approvals issued by an insurer or underwriter, or roof assembly designs warranted or guaranteed by anyone other than the '''''Guarantor''''', do not satisfy the requirements for a roof ''Assembly with Proven Past Performance''.
 +
</li></ol>
  
===='''A-2.1.5.3. All Wood Roof Decks'''====
+
====3.1.4.4. Specifying a Custom-engineered Securement Design====
:Wood is a common roof ''deck'' construction material that has been used for many years because of its economy, ease of fabrication, lighter construction, and ready availability. Acceptable wood roof ''decks'' may include (without limitation)
 
:*'''wood board''' (tongue-and-groove, ship-lapped, or splined boards or planks that typically range in thickness from 19 mm to 89 mm (nominal 1" to 4").  Wood board ''decks'' may also include Mill Decks which are also called Nail-Laminated Timber decks.  These are constructed with a single layer of dimensional boards (dimensions can vary), placed on edge and spiked together to form a Mill Deck.  The thickness of the boards is determined by the anticipated loads and spacing of roof joists or trusses.
 
:*'''plywood''' (exterior type plywood mechanically fastened to the roof framing).
 
:*'''non-veneered''' (oriented strand board, waferboard, etc.).
 
:*'''laminated timber''' (typically comprised of crossing layers of dimensional solid wood material, laminated to form a thick, dimensionally stable slab strong enough to support significant structural loads).
 
  
<div id=A-2.1.5.4.(1)></div>
+
<ol>
 +
<li>When, for various reasons, a system of securement cannot be designed using either a ''Tested Assembly'' or an ''Assembly with Proven Past Performance'', the securement system must be designed by a ''Registered Professional'' "skilled in the work concerned" (See the "British Columbia Building Code", Division C, Part 2, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=836 Article 2.2.1.2., "Structural Design"]).
 +
</li></ol>
  
===={{hilite |'''A-2.1.5.4.(1) Plywood Roof Decks''' || 2024-October-20 }}====
+
===3.1.5. Uninsulated Systems===
:There are eight (8) exterior grades of plywood used in Canada, and the Canadian Wood Council (CWC) identifies and explains each of them in their published article, "Plywood grades" (https://cwc.ca/wp-content/uploads/2019/03/Plywood-Grades.pdf).  Because grades vary, it is incumbent upon the Design Authority to specify the correct grade for roof decking.
+
(The requirements in [[#3.1.3. All Systems | Subsection 3.1.3., "All Systems"]], shall be read together with the following articles)
  
<div id=A-2.1.5.4.(3)></div>
+
====3.1.5.1. Securement against Specified Wind Loads====
  
===={{hilite | '''A-2.1.5.4.(3) Suitability of Plywood Roof Deck''' || 2025-October-25 }}====
+
<ol>
:{{hilite | The roof membrane, when installed to the applicable RGC Standard, will repel water and keep the structural roof ''deck'' dry, but if the membrane is damaged and water leaks through undetected, untreated plywood decks exposed to water for a prolonged period may succumb to decay, which can compromise ''deck'' integrity. To protect against accidental leakage, plywood decks and adjoining wall or curb surfaces for ''vegetated roof assemblies'' should be constructed with pressure-treated plywood. Many membrane roof assemblies tested on plywood stipulate a minimum deck thickness of 15.88 mm (5/8”) (See Article 3.1.3.3. on the subject of ''Tested Assemblies''). When the existing plywood ''deck'' is untreated, it should be covered with a suitable overlay (i.e., treated tongue-and-groove plywood, concrete board, etc.). To ensure that water does not leak through the joints, tape the joints with a self-adhered material that is compatible with, and will adhere to, the overlay board || 2025-October-25 }}.
+
<li>All uninsulated ''roof systems'' must be designed to resist displacement by ''Specified Wind Loads'', using the options articulated in [[#3.1.4.1. Securement Against Specified Wind Loads | Article 3.1.4.1.]]
 +
<li>{{hilite | Where air intrusion into the ''roof assembly'' could compromise its securement, every ''roof assembly'' design must provide guidance for the installation of ''control layers'', particularly where ''control layers'' intersect roof drains, penetrations, or assemblies adjacent to the roof (i.e., walls) (Ref. || 2024-June-15 }} [[#Part_6_-_Air_and_Vapour_Controls | Part 6, "Air and Vapour Controls"]]).
 +
</li></ol>
  
:{{hilite | Properly securing decking or a ''deck'' overlay will require the help of a registered professional engineer, who will also ensure that fasteners will be compatible with the plywood treatment. ''Deck'' overlays form part of the ''roof assembly'' and so their securement is typically governed by what has been tested || 2025-October-25 }}.
+
===3.1.6. Protected Roof Systems===
 +
(The requirements in [[#3.1.3. All Systems | Subsection 3.1.3., "All Systems"]], shall be read together with the following articles)
  
:{{hilite | For more about pressure-treated plywood, refer to the || 2025-October-25 }} [https://cwc.ca/en/home/ Canadian Wood Council]. {{hilite | For a helpful guide on fastener compatibility, see the BC Housing Builder Insight document, || 2025-October-25 }} [https://www.bchousing.org/publications/Builder-Insight-08-Compatibility-Fasteners-Connectors-Wood.pdf “Compatibility of Fasteners and Connectors with Residential Pressure Treated Wood”].
+
====3.1.6.1. Securement of Ballasted Roof Systems====
 +
(See [[Notes to SBS Standard#A-3.1.6.1. | {{hilite | Note A-3.1.6.1. || 2024-October-20 }}]].  Also see [[#9.1.6. Protected Roof Systems | Subsection 9.1.6., "Protected Roof Systems"]])
  
<div id=A-2.1.5.5.></div>
+
<ol>
 +
<li>''Roof systems'' secured with {{hilite | stone (gravel) || 2025-October-25 }} ballast, pavers, or a combination of each, must be designed to resist displacement by ''Specified Wind Loads'', regardless of any ''overburden'' the design may call for.
 +
<li>The securement of all ''roof systems'' held in place by ballast must be designed by a ''registered professional'' "skilled in the work concerned" ("British Columbia Building Code", Division C, [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=836 Section 2.2., "Administration"]), and ballast rates shall conform to
 +
<ol>
 +
<li>the minimum requirements in {{hilite | '''Table 3.1.6.1.''' || 2025-October-25 }} (Ref. [[#3.3.5.1. Ballasted Systems | Article 3.3.5.1., "Ballasted Systems"]], and [[#9.3.6. Protected Roof Systems | Subsection 9.3.6., "Protected Roof Systems"]]), or
 +
<li>extrapolated values using ANSI-SPRI RP-4 (latest edition), "Wind Design Standard for Ballasted Single-ply Roofing Systems".
 +
</li></ol>
 +
<li>{{hilite | {{hilite | Stone ballast || 2025-October-25 }} size for all ballasted ''roof systems'' shall conform to ASTM D7655/D7655M-12, "Standard Classification for Size of Aggregate Used as Ballast for Membrane Roof Systems". || 2023-June-16 }}
 +
<li>To facilitate resistance to ''Specified Wind Loads'',
 +
<ol>
 +
<li>a filter fabric is required beneath gravel or paver ballast, and
 +
<li>a protection layer is required beneath crushed ballast.
 +
</li></ol>
 +
<li><span class="recommended">On roofs specified to utilize {{hilite | stone || 2025-October-25 }}{{strike| gravel || 2024-October-25 }} ballast, no fewer than two parallel rows of pavers should be considered for ''Corner'' and ''Edge'' zones, to prevent or reduce wind scouring of the gravel</span>.
 +
<li>When pavers are selected as ballast for a ''roof system'', the ''Design Authority'' must determine the support and placement of pavers to resist displacement by ''Specified Wind Loads''.
 +
<li>{{hilite | ''Vegetated roof systems'' designed as ballast for a ''protected membrane roof assembly'' shall be designed in accordance with the requirements in|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#PART_3 {{hilite |Part 3|| 2025-October-25 }}] {{hilite |of the “RGC Standard for Vegetated Roofs”|| 2025-October-25 }}.
 +
</li></ol>
 +
<br>
 +
:::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Table 3.1.6.1.<br>Minimum Requirements for Stone Ballast''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.1.6.1. || 2025-October-25 }}<br><small>{{hilite | (Note: these requirements apply only where no other guidance for stone ballast<br>has been provied by the ''Design Authority'') || 2025-October-25 }}</small>
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
|-
 +
! XPS Insulation<br>Thickness !! Stone Ballast Required Weight !! Minimum Ballast Depth<br>(approximate)<sup>†</sup>
 +
|-
 +
|  Up to 50.8 mm (2") ||  60 Kg/M<sup>2</sup> (12 lb./sf) ||  44.45 mm (1-3/4")
 +
|-
 +
|  76.2 mm (3") || 80 Kg/M<sup>2</sup> (17 lb./sf) || 57.15 mm (2-1/4")
 +
|-
 +
| 101.6 mm (4") || 108 Kg/M<sup>2</sup> (22 lb./sf) || 76.2 mm (3")
 +
|-
 +
| 125 mm (5") || 132 Kg/M<sup>2</sup> (27 lb./sf) || 88.9 mm (3-1/2")
 +
|-
 +
| 152.4 mm (6") || 156 Kg/M<sup>2</sup> (32 lb./sf) || 107.95 mm (4-1/4")
 +
|-
 +
| 177.8 mm (7") || 180 Kg/M<sup>2</sup> (37 lb./sf) || 125 mm (5")
 +
|-
 +
| 203.2 mm (8") || 204 Kg/M<sup>2</sup> (42 lb./sf) || 139.7 mm (5-1/2")
 +
|-
 +
|}
 +
::<small><sup>†</sup> These minimum requirements should be noted by the ''registered professional'' <br>designing the ballast system.</small>
  
===='''A-2.1.5.5. Overlays for Mass Timber Decks'''====
+
====3.1.6.2. Securement of Modified Protected Roof Systems====
:An overlay may be required by the ''manufacturer'' for these types of wood decks to protect membranes from wood sap, deck surface irregularities, and protruding fasteners.
 
  
<div id=A-2.1.7.></div>
+
<ol>
 +
<li>Modified ''protected roof systems'' shall be secured according to the requirements for ''conventionally insulated'' roofs supporting overburden.
 +
</li></ol>
  
===='''A-2.1.7. Walls'''====
+
===3.1.7. Roof Replacement and Alterations===
:''Walls'' and roofs intersect either directly (where the ''wall'' structurally connects to the roof structure, so that both move together), or indirectly (where the roof structure and the ''wall'' structure are independent of each other, so that the movement of one does not affect the other). These locations require an expansion joint.
+
====3.1.7.1. Complete Roof System Replacement====
  
<div id=A-2.1.8.></div>
+
<ol>
 +
<li>Complete ''roof system'' replacement ''projects'' must be designed to secure the new ''roof system'' against displacement by ''Specified Wind Loads''.
 +
</li></ol>
  
===='''A-2.1.8. Electrical Cables and Boxes'''====
+
====3.1.7.2. Partial Roof System Replacement====
:Electrical boxes, fixtures, and electrical wiring (exposed or protected inside conduit) installed inside, on top of, or beneath a roof assembly may present hazards for roofing workers and building occupants and may interfere with the roof design.
 
  
:Many ''Tested Assemblies'' (roof assemblies tested under controlled conditions) rely on mechanical fasteners to secure some or all materials. Roof fasteners (which are self-drilling so they can penetrate steel decking) are capable of penetrating even the most rigid electrical conduit. When roofing screws contact an energized electrical system, workers can be shocked, sometimes with lethal consequences.  Furthermore, electrical conductors damaged by roofing screws may not trip fault protection devices which generally do not respond to high-resistance faults. High-resistance electrical faults have been linked to numerous structural fires, which sometimes occur years after conductors were damaged. For these reasons, separating the electrical service from the roof assembly is critical.
+
<ol>
 +
<li>Partial roof replacements must be designed to secure the ''roof system'' against displacement by ''Specified Wind Loads'', in keeping with the requirements in [[#3.1.3.2. Calculation of Specified Wind Loads | Article 3.1.3.2.]] (See also [[#3.3.6.2. Partial Roof Replacement | Article 3.3.6.2.]]).
 +
<li>When specifying securement for a partial roof replacement, the securement system must be designed and specified by the ''Design Authority'' (See also [[#1.1.4. Replacement and Alterations | Subsection 1.1.4., "Replacement and Alterations"]]); <span class="recommended">nevertheless, mechanical fastening, when practicable, is the recommended method for securing new materials to an existing ''roof system''</span> (See [[Notes to SBS Standard#A-3.7.7.2. | Note A-3.1.7.2.]]).
 +
</li></ol>
  
:Electrical conductor damage is not a problem exclusive to new construction. As roofs wear out and require partial or full replacement, mechanical fastening is often the only way by which new roof materials can be secured to the structural roof deck, to comply with the Building Code. When electrical systems are hidden by existing ''roof system'' materials, the design and construction of a replacement roof may be exceedingly difficult to execute.
+
==Section 3.2. Materials==
 +
===3.2.1. Material Properties===
 +
====3.2.1.1. Substituting Materials Used in a Tested Assembly====
 +
(See [[Notes to SBS Standard#A-3.2.1.1. | Note A-3.2.1.1.]])
  
:Rule 12-022 of the "2021 Canadian Electrical Code, Part I", now prohibits the installation of “cables or raceways” within a roof assembly. Rule 12-022 is reprinted below (the term “roof decking system” used in the Rule has the same meaning as ''roof assembly'' used by ASTM International (ASTM D6630-08, "Standard Guide for Low slope Insulated Roof membrane Assembly Performance"), and by this Standard):
+
<ol>
 +
<li>{{hilite | When a manufacturer's ''Tested Assembly'' incorporates materials (and listed alternates) that are not part of the '''''RoofStar Guarantee Program''''', the ''Design Authority'' must identify appropriate substitutions for those materials from the list of|| 2021-October-30 }} [http://rpm.rcabc.org/index.php?title=Division_C:_Accepted_Materials RoofStar-accepted Materials], and obtain
 +
<ol>
 +
<li>{{hilite | written approval from the technical manager of the ''manufacturer'' stating that the substituting material will not reduce the capabilities of the ''Tested Assembly''|| 2021-October-30 }}, or
 +
<li>{{hilite | a letter of support issued by a registered professional qualified to perform the work in Part 4 of the Building Code (Ref. the "British Columbia Building Code", Division C, Part 2,|| 2021-October-30 }} [https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/construction-industry/building-codes-and-standards/revisions-and-mo/bcbc_2024.pdf#page=837 {{hilite |Article 2.2.1.2., "Structural Design"|| 2021-October-30 }}]).
 +
</li></ol>
 +
<li><span class="principles">{{hilite | Any material substitution should|| 2021-October-30 }}</span>
 +
<ol>
 +
<li><span class="principles">{{hilite | be limited to one (1) material component from the ''Tested Assembly'', but the substitution of more than one material component is permissible provided the substitution complies with the other requirements in this Article|| 2021-October-30 }}</span>, and
 +
<li><span class="principles">{{hilite | be made in keeping with the decision process flows for MARS, PARS and AARS assemblies published in|| 2021-October-30 }}</span> CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition), "Annex F".
 +
</li></ol>
 +
<li>{{hilite | Because of its nature, a ''new roof assembly'' patterned after an ''Assembly with Proven Past Performance'' does not qualify for material substitution|| 2021-October-30 }}.
 +
</li></ol>
  
::'''12-022 Cables or raceways installed in roof decking systems'''
+
===3.2.2. Securement Materials===
:::1) Cables or raceways installed in accordance with this Section shall not be installed in locations concealed within a roof decking system, where the roof systems utilises screws or other metal penetrating fasteners.
+
====3.2.2.1. Fasteners====
  
:::2) Notwithstanding Subrule 1) the following circuits shall be permitted for installations in locations concealed within a roof decking system:
+
<ol>
::::a) Class 2 circuits in which the open-circuit voltage does not exceed 30 V; and
+
<li>The minimum requirements in this Article apply to any ''roof system'', regardless of requirements published elsewhere.
::::b) embedded trace heat.
+
<li><span class="principles">The ''Design Authority'' should specify the correct type of fastener, keeping in mind</span>
:::3) Where wiring is concealed within the roof deck system in accordance with Subrule 2), a warning label shall be installed
+
<ol>
::::a) at all permanently installed roof access points where provided; and
+
<li><span class="principles">pull-out strength,</span> and
::::b) in a conspicuous location in the roof area where the cabling is installed.
+
<li><span class="principles">corrosion resistance (contributing factors to fastener corrosion may include dissimilar metal contact, excessive building humidity, corrosive chemicals within components of the ''roof system'', or corrosive elements provided within the building envelope etc.)</span>.
 +
</li></ol>
 +
<li>Fasteners must be capable of securing the ''roof system'' components to resist ''Specified Wind Loads''.
 +
<li>Unless otherwise permitted in writing by the ''manufacturer'', fasteners shall be resin-coated, self-drilling screws manufactured with recessed heads, and must be used in combination with plates, as shown in {{hilite | '''Table 3.2.2.1.''' || 2025-October-25 }}
 +
</li></ol>
 +
<br>
 +
::::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Table 3.2.2.1.<br>Minimum Fastener and Plate Requirements''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.2.2.1. || 2025-October-25 }}<br><small>{{hilite | (Note: these requirements apply only where no other guidance for fastener and plate types and sizes has been provided by the ''Design Authority'') || 2025-October-25 }}</small>
 +
|-
 +
|}
 +
{|  class="wikitable" style="margin-left: 20pt; margin-right: auto;border-color:#E7E9E9;vertical-align:top;text-align:center;" 
 +
|-
 +
! Material !! Fastener<br>Size !! Plate
 +
|-
 +
| Deck overlays || #12 || 73.03 mm (2-7/8”) Hexagonal, 76.2 mm (3”) Round or Square
 +
|-
 +
| Insulation || #12  || 73.03 mm (2-7/8”) Hexagonal, 76.2 mm (3”) Round or Square
 +
|-
 +
| Insulation Overlays || #12  || 73.03 mm (2-7/8”) Hexagonal, 76.2 mm (3”) Round or Square
 +
|-
 +
|  Membranes || #14  || Proprietary
 +
|-
 +
|}
  
:While Rule 12-022 permits the installation of cables and raceways within a ''roof system'' that does not utilize "screws or other metal penetrating fasteners", doing so is inadvisable; unlike electrical systems that are more or less permanent, ''roof systems'' must be renewed, usually multiple times over the course of a building's expected service life. Often, when the ''roof system'' is only partially renewed (for reasons of economy, or to limit the amount of material entering the waste stream), mechanical fasteners offer the best option for securing new materials to those left ''in situ''. Obviously, electrical systems located anywhere close to the ''roof assembly'' pose high risks to both the ''Contractor'' during construction and may introduce a fire risk to building occupants later (for more on this subject, see the Information Centre in Division E). Providing considerable separation between electrical systems and the ''roof assembly'', and ensuring that electrical services to rooftop equipment utilize purpose-made penetrations that can be sealed into the ''roof system'', will serve the Owners well for the service life of the building.
+
====3.2.2.2. Adhesives====
  
:Rule 12-022 is a national code requirement directly resulting from a years-long endeavor by the RCABC, provincial adoption of the Canadian Electrical Code, Part I may be delayed because of the British Columbia code cycle. Nevertheless, the ''Design Authority'' is advised to adopt the requirements and prohibitions of the national Code, and to also adopt the following requirements for new construction or replacement roofing, as they apply.
+
<ol>
 +
<li>{{hilite | Adhesives used to secure any ''roof system'' materials must be acceptable to the ''manufacturer'' and be capable of resisting ''Specified Wind Loads''. || 2023-June-16 }}
 +
<li>Adhesives listed in a selected ''Tested Assembly''
 +
<ol>
 +
<li>must be used to secure applicable layers within the ''roof system'', and
 +
<li>may be substituted only with products listed in the ''Tested Assembly'' report.
 +
</li></ol>
 +
<li>In the absence of a ''Tested Assembly'', or for adhered and partially adhered ''roof assemblies'' with ''Proven Past Performance'', adhesives used to secure new roofing materials must be acceptable to the ''manufacturer'' and must be demonstrably capable of resisting ''Specified Wind Loads''.
 +
<li>Bitumen used as a hot-applied adhesive must be Type 3 or SEBS.
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 3</span></big>===
+
====3.2.2.3. Stone (Gravel) Ballast====
<div id=A-3.1.1.1.></div>
+
(See also {{hilite | '''Table 3.1.6.1.''' || 2025-October-25 }} in [[#3.1.6.1. Securement of Ballasted Roof Systems | Article 3.1.6.1.]])
  
===='''A-3.1.1.1. Scope'''====
+
<ol>
:{{hilite | Wind exerts tremendous forces on a ''roof system'', regardless of roof type.  While wind is commonly experienced as a “pushing” force, wind also generates “negative” (pulling or “uplift”) forces, particularly on flat roofs. These powerful forces can, if the ''roof system'' is poorly secured to the building’s structural elements, detach a portion or all of a ''roof system'' from the building|| 2021-October-30 }}.
+
<li>{{hilite | Stone (gravel) || 2025-October-25 }} ballast used to secure a ''roof system'' must be washed (clean) round or crushed stone and must conform to ASTM D7655/D7655M-12, "Standard Classification for Size of Aggregate Used as Ballast for Membrane Roof Systems", or to Table 3.3.
 +
<li>The minimum requirements in this Article must not be reduced except by a written Variance that shall be endorsed in writing by the owner or the owner's representative, and submitted to the '''''RoofStar Guarantee Program''''' as part of the '''''Guarantee''''' record.
 +
</li></ol>
 +
<br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Table 3.2.2.3.<br>Stone Ballast Size and Grades''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.2.2.3. || 2025-October-25 }}
 +
|-
 +
|}
 +
:::{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
|-
 +
! Nominal size !! Percentage Passing
 +
|-
 +
| 38.1 mm (1-1/2") ||  100%
 +
|-
 +
|  25.4 mm (1") || 70 - 100%
 +
|-
 +
| 19.05 mm (3/4") || 5 - 20 %
 +
|-
 +
| 12.7 mm (1/2")  || 0 - 6 %
 +
|-
 +
| 4.76 mm (3/16") || 0 - 2 %
 +
|-
 +
|}
  
:{{hilite | The Code refers to these calculated forces as ''Specified Wind Loads'', which act in concert with the “responses of the roof system…[and therefore] are time-and-space dependent, and thus are dynamic in nature.” (CSA Standard A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition), 4.1).  Because of this dynamic interplay between loads and a building’s structural capacities (the load paths between the roof system and other structural elements of the building), the ''Design Authority'' must design a roof capable of effectively absorbing and mitigating ''Specified Wind Loads''|| 2021-October-30 }}.
+
====3.2.2.4. Pavers and Pedestals====
  
:{{hilite | As stated earlier, the calculation of ''Specified Wind Loads'' falls under "British Columbia Building Code", Division B, Subsection 4.1.7., "Wind Loads", while the securement of the roof components system to resist ''Specified Wind Loads'' is governed by the "British Columbia Building Code", Division B, Article 5.2.2.2., "Determination of Wind Load"|| 2021-October-30 }}.
+
<ol>
 +
<li>Pavers that are partially supported (i.e., with pedestals) should be capable of resisting anticipated loads (i.e., hydraulically pressed concrete pavers).
 +
<li>Pedestals
 +
<ol>
 +
<li><span class="principles">should be adjustable when a level surface is required</span>,
 +
<li>must be purpose-made, and
 +
<li>must include an integral spacer rib measuring at least a 3.18 mm (1/8”) in width, to uniformly separate pavers.
 +
</li></ol>
 +
</li></ol>
  
<div id=A-3.1.1.1.(4)></div>
+
==Section 3.3. Application==
 +
===3.3.1. Guarantee Term Requirements===
 +
====3.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
  
===='''A-3.1.1.1.(4) Tested Assembly'''====
+
<ol>
:It is important to note that CSA-A123.21 is a test method developed only for ''conventionally insulated roof systems'' constructed with sheet membranes and does not apply to other sheet membrane ''roof systems'', or to ''roof systems'' constructed with other waterproofing materials such as liquid-applied membranes.
+
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
  
<div id=A-3.1.1.2.></div>
+
====3.3.1.2. RoofStar 15-Year Guarantee====
  
===='''A-3.1.1.2. Intent'''====
+
<ol>
:{{hilite |In December 2018 the Province of British Columbia released a revised edition of the|| 2021-October-30 }} [http://free.bcpublications.ca/civix/content/public/bcbc2018/?xsl=/templates/browse.xsl "British Columbia Building Code"] {{hilite |(the "Code"), based on the 2015 "National Building Code of Canada". The 2018 Building Code includes a considerable expansion of the requirements in Division B, Part 4 (see "British Columbia Building Code", Division B,|| 2021-October-30 }} [http://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp4s41r2 Subsection 4.1.7., "Wind Loads"]) {{hilite |applicable to the loads exerted on a ''roof system'' by wind.  The careful reader will note that these Part 4 requirements apply to all Part 3 buildings and to some Part 9 structures|| 2021-October-30 }}.
+
<li>All ''projects'' intended to qualify for a '''''RoofStar 15-year Guarantee''''' shall comply with the requirements in this Standard for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>conform to the specified design when enhanced ''roof system'' securement is required (See [[#3.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee | Article 3.1.2.1.]]).
 +
</li></ol>
 +
</li></ol>
  
:{{hilite | While the expansion of Part 4 addresses the calculation of dynamic wind loads experienced by a ''roof assembly'', Part 5 ("Environmental Separation") specifies how a ''roof system'' should be secured to resist ''Specified Wind Loads'' (see the || 2021-October-30}} "British Columbia Building Code", Division B, [http://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp5s52 {{hilite |Article 5.2.2.2., "Determination of Wind Load"])|| 2021-October-30 }}.
+
===3.3.2. All Systems===
 +
====3.3.2.1. Securing Systems with Mechanical Fasteners====
  
:{{hilite |Article 5.2.2.2. of the Building Code applies almost exclusively to ''conventionally insulated roof systems'' and is specifically oriented to sheet membrane roof systems. While sheet membrane ''conventionally insulated roof systems'' are prolific and perhaps the most common type of ''waterproofing roof system'', the Building Code offers little guidance for other roof types, including uninsulated roof systems, liquid membrane systems, systems insulated above the membrane (referred to as “inverted” or “protected”), and steeply sloped roofs (greater than 1:6, or 2" in 12"). This Standard incorporates design and construction guidance, even where the Code appears to offer little or no support|| 2021-October-30 }}.
+
<ol>
 +
<li>Unless otherwise specified by a ''Tested Assembly'', a ''roof assembly'' with ''Proven Past Performance'', or a custom-engineered ''assembly'',
 +
<ol>
 +
<li>fastener patterns shall conform to Tables 3.5. through 3.10.,
 +
<li>the minimum number of fasteners must conform to the requirements in Table 3.4., and
 +
<li>fasteners shall be installed at least 152.4 mm (6”) from panel corners, measured from each edge of the panel, but the precise placement of fasteners shall be confirmed with the ''manufacturer''.
 +
</li></ol>
 +
<li>Fasteners used to secure boards from curling, or to secure boards at slope transitions, shall be additional to the minimum number of fasteners and plates required by a ''Tested Assembly'', a ''roof assembly'' with ''Proven Past Performance'', a custom-engineered ''assembly'', or the patterns shown in Tables 3.4. through 3.10.
 +
<li>When mechanically attached membranes are installed together with new insulation, the ''insulation assembly'' {{hilite | (with or without an ''insulation overlay'')|| 2020-July-3 }} must be held in place independently from the membrane, with no fewer than four (4) fasteners per panel.
 +
<li>{{hilite | Regardless of where fasteners are used in the ''roof system'', when they penetrate and secure another material to a substrate, mechanical fasteners must conform to the requirements illustrated in {{hilite | Figure 3.4.|| 2021-October-30 }} and shall (unless exceeded by the fastener manufacturer’s published requirements)|| 2020-July-3 }}
 +
<ol>
 +
<li>{{hilite |penetrate through the bottom surface of|| 2021-October-30 }}
 +
<ol>
 +
<li>steel ''decks'' at least 19.05 mm (3/4") (<span class="principles">fasteners should penetrate the top flutes only)</span>, and
 +
<li>{{hilite | plywood sheathing by at least 19.05 mm (3/4")|| 2021-October-30 }}.
 +
</li></ol>
 +
<li>{{hilite |penetrate into solid dimensional lumber or concrete by at least 25.4 mm (1")|| 2021-October-30 }}.
 +
</li></ol>
 +
<li>{{hilite | Unless otherwise provided for in a ''Tested Assembly'' report, in the documentation for an ''Assembly with Proven Past Performance'', or by a ''Registered Professional'' in a custom-engineered securement system, mechanical fastening of panel materials shall conform  to the minimum RGC Guarantee historical requirements in '''Table 3.3.2.1.-A''' through '''Table 3.3.2.1.-G''' || 2025-October-25 }}.
 +
</li></ol>
 +
<br>
 +
::::::::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 3.3.2.1.-A Fastener Penetration Into or Through Deck''' || 2025-October-25 }}<br>{{hilite | Forming Part of Sentence 3.3.2.1.(4). || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:Figure 3.5.jpg|link=http://rpm.rcabc.org/images/9/95/Figure_3.5.jpg| 500 px]]
 +
|}
  
:{{hilite |Proper securement of the ''roof system'', to resist wind uplift loads, is good practice. It also fulfills the design and construction objectives of the Code, to guard public safety, and it supports the design objectives of the '''''RoofStar Guarantee Program''''', to keep weather outside of the buildingIn this Part, the reader will find explanatory notes and aids in the design and construction of a roof intended to be Code-compliant.|| 2021-October-30 }}
+
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:800px;" | {{hilite | '''Table 3.3.2.1.-A.<br>Minimum Requirements for Mechanical Fastening''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Note: Fasteners may be located within 50.8 mm (2") (in any direction) of the positions shown in the diagrams,<br>but this must be validated by the ''manufacturer''.)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
|-
 +
! colspan="1" rowspan="2" style="width: 500px;vertical-align:center;text-align:center;background: #A9A9A9;"  |  Material Dimensions
 +
! colspan="3" rowspan="1" style="width: 300px;vertical-align:center;text-align:center;background: #A9A9A9;" | Roof Zone (Field, Perimeter, Corner)
 +
|-
 +
!  colspan="1" rowspan="1" style="width: 100px;vertical-align:top;text-align:center;background: #A9A9A9;"      |  F
 +
!  colspan="1" rowspan="1" style="width: 100px;vertical-align:top;text-align:center;background: #A9A9A9;"        |  P
 +
!  colspan="1" rowspan="1" style="width: 100px;vertical-align:top;text-align:center;background: #A9A9A9;"      |  C
 +
|-
 +
! colspan="1" rowspan="1" style="width: 500px;vertical-align:top;text-align:left;"      |  1219.2 mm x 2438.4 mm (48" x 96") ||  ||  || 
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Deck Overlay supporting mechanically attached materials || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 4 ||  style="width: 100px;vertical-align:top;text-align:center;background:#ffffcc;"  | 4  || style="width: 100px;vertical-align:top;text-align:center;background:#ffffcc;"  | 4
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | {{hilite | Insulation or Insulation Overlay supporting mechanically attached materials || 2020-July-3 }} ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | {{hilite | 4 || 2020-July-3 }} ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | {{hilite | 4 || 2020-July-3 }}  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | {{hilite | 4 || 2020-July-3 }}
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Insulation ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 8 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 12  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 15
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Insulation Overlays ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 8 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 12  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 15
 +
|-
 +
|}
  
<div id=A-3.1.3.1.></div>
+
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
! colspan="1" rowspan="1" style="width: 500px;vertical-align:top;text-align:left;"      |  1219.2 mm x 1828.8 mm (48" x 72")  ||  ||  ||
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Insulation ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 6 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 8  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 12
 +
|-
 +
|}
  
===='''A-3.1.3.1. Responsibility for Design'''====
+
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
:{{hilite |See also the "British Columbia Building Code", Division B,|| 2021-October-30 }} [http://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dcp2s22r2 Article 2.2.1.2., "Structural Design"], {{hilite |and the "British Columbia Building Code", Division B, Part 5, Notes to Part 5:|| 2021-October-30 }} [https://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp5n Note A-5.2.2.2.(4)].
+
! colspan="1" rowspan="1" style="width: 500px;vertical-align:top;text-align:left;"      | 1219.2 mm x 1219.2 mm (48" x 48")  ||  ||  ||
 +
|-
 +
| style="vertical-align:top;text-align:left;"   | Insulation || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"   | 5 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 6  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 8
 +
|-
 +
|}
  
<div id=A-3.1.4.1.></div>
+
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
! colspan="1" rowspan="1" style="width: 500px;vertical-align:top;text-align:left;"      |  914.4 mm x 1219.2 mm (36" x 48")    ||  ||  ||
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Insulation ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 4 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 6  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 7
 +
|-
 +
|}
 +
 
 +
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
! colspan="1" rowspan="1" style="width: 500px;vertical-align:top;text-align:left;"      |  609.6 mm x 2438.4 mm (24" x 96")    ||  ||  ||
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Insulation ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 5 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 6  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 8
 +
|-
 +
|}
 +
 
 +
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
! colspan="1" rowspan="1" style="width: 500px;vertical-align:top;text-align:left;"      |  609.6 mm x 1219.2 mm (24" x 48")  ||  ||  ||
 +
|-
 +
| style="vertical-align:top;text-align:left;"  | Insulation ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 4 ||  style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 4  || style="width: 100px;vertical-align:top;text-align:center;background: #ffffcc;"  | 5
 +
|-
 +
|}
 +
 
 +
====3.3.2.2. Securing Systems with Adhesives====
 +
 
 +
<ol>
 +
<li><span class="principles">Adhesives may be used to secure new roofing materials to an existing ''roof system''</span>, provided the specific application procedures and methods are engineered by or for the ''Design Authority''.
 +
<li>Notwithstanding Sentence (1), the use of adhesive to secure insulation shall conform to [[#7.3.3.1. Adhesive-applied Insulation | Article 7.3.3.1.]]
 +
</li></ol>
 +
 
 +
====3.3.2.3. Securing Roofs with Overburden====
 +
 
 +
<ol>
 +
<li>Any ''overburden'', including ''vegetated roof systems'', must be installed in keeping with the designed securement methods and systems specified by the ''Design Authority'', {{hilite | and {{strike| in alignment with || 2024-October-25 }} shall also conform to the the requirements in || 2025-October-25 }} [[#Part 14 - The Roof as a Platform | Part 14]] {{hilite | of this Standard and to both Part 3 and [https://rpm.rcabc.org/index.php?title=VRA_Standard#PART_10 Part 10] of the “RGC Standard for Vegetated Roofs” || 2025-October-25 }}.
 +
</li></ol>
 +
<br>
 +
::{|
 +
|-
 +
|  colspan="1"; style="text-align:left;width:950px;" |NOTE: {{hilite | '''Table 3.3.2.1.-B''' through '''Table 3.3.2.1.-G''' || 2025-October-25 }} {{hilite | illustrate fastener patterns and placement based on historical Guarantee requirements, to provide optimum wind uplift resistance. These patterns are to be used only when patterns are not provided in a ''Tested Assembly'', a ''roof assembly'' with ''Proven Past Performance'', or in a custom-engineered ''assembly''.  Fasteners may be located within 50.8 mm (2") of position shown in diagrams in any direction, but this must be validated by the ''manufacturer''.|| 2023-June-16 }}
 +
|-
 +
|}
 +
 
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1000px;" | {{hilite | '''Table 3.3.2.1.-B.<br>Minimum Mechanical Fastening Patterns for<br>Panels 1219.2 mm x 2438 mm (48" x 96")''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Click on drawing to expand)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: center; margin-left: 20pt; margin-right: auto; border: none;"
 +
|
 +
! colspan="3" rowspan="1" style="width: 500px;vertical-align:centre;text-align:center;background: #A9A9A9;"  |  1219.2 mm x 2438.4 mm (48" x 96")
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
| style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x8 (4 fasteners).jpg | link=http://rpm.rcabc.org/images/4/4f/Table_3.4_-_4x8_%284_fasteners%29.jpg | 300 px]]  '''4 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x8 (4 fasteners).jpg | link=http://rpm.rcabc.org/images/4/4f/Table_3.4_-_4x8_%284_fasteners%29.jpg | 300 px]]  '''4 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x8 (4 fasteners).jpg | link=http://rpm.rcabc.org/images/4/4f/Table_3.4_-_4x8_%284_fasteners%29.jpg | 300 px]]  '''4 Fasteners'''
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
| style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x8 (8 fasteners).jpg | link=http://rpm.rcabc.org/images/b/b7/Table_3.4_-_4x8_%288_fasteners%29.jpg | 300 px]] '''8 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x8 (12 fasteners).jpg | link=http://rpm.rcabc.org/images/c/c9/Table_3.4_-_4x8_%2812_fasteners%29.jpg | 300 px]] '''12 Fasteners'''  || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x8 (15 fasteners).jpg | link=http://rpm.rcabc.org/images/5/58/Table_3.4_-_4x8_%2815_fasteners%29.jpg | 300 px]] '''15 Fasteners'''
 +
|-
 +
|}
 +
 
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1000px;" | {{hilite | '''Table 3.3.2.1.-C.<br>Minimum Mechanical Fastening Patterns for<br>Panels 1219.2 mm x 1828.8 mm (48" x 72")''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Click on drawing to expand)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: center; margin-left: 20pt; margin-right: auto; border: none;"
 +
|
 +
! colspan="3" rowspan="1" style="width: 500px;vertical-align:centre;text-align:center;background: #A9A9A9;"  |  1219.2 mm x 1828.8 mm (48" x 72")
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
| style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 4x6 (6 fasteners).jpg | link=http://rpm.rcabc.org/images/9/94/Table_3.5_-_4x6_%286_fasteners%29.jpg | 300 px]] '''6 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 4x6 (8 fasteners).jpg | link=http://rpm.rcabc.org/images/8/88/Table_3.5_-_4x6_%288_fasteners%29.jpg | 300px]] '''8 Fasteners'''  || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 4x6 (12 fasteners).jpg | link=http://rpm.rcabc.org/images/c/c7/Table_3.5_-_4x6_%2812_fasteners%29.jpg | 300 px]] '''12 Fasteners'''
 +
|-
 +
|}
 +
 
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1000px;" | {{hilite | '''Table 3.3.2.1.-D.<br>Minimum Mechanical Fastening Patterns for<br>Panels 1219.2 mm x 1219.2 mm (48" x 48")''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Click on drawing to expand)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: center; margin-left: 20pt; margin-right: auto; border: none;"
 +
|
 +
! colspan="3" rowspan="1" style="width: 500px;vertical-align:centre;text-align:center;background: #A9A9A9;"  |  1219.2 mm x 1219.2 mm (48" x 48")
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
| style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x4 (5 fasteners).jpg | link=http://rpm.rcabc.org/images/f/f6/Table_3.4_-_4x4_%285_fasteners%29.jpg | 300 px]] '''5 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x4 (6 fasteners).jpg | link=http://rpm.rcabc.org/images/7/76/Table_3.4_-_4x4_%286_fasteners%29.jpg | 300 px]] '''6 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.4 - 4x4 (8 fasteners).jpg | link=http://rpm.rcabc.org/images/7/76/Table_3.4_-_4x4_%288_fasteners%29.jpg | 300 px]] '''8 Fasteners'''
 +
|-
 +
|}
 +
 
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1000px;" | {{hilite | '''Table 3.3.2.1.-E.<br>Minimum Mechanical Fastening Patterns for<br>Panels 914.4 mm x 1219.2 mm (36" x 48")''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Click on drawing to expand)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: center; margin-left: 20pt; margin-right: auto; border: none;"
 +
|
 +
! colspan="3" rowspan="1" style="width: 500px;vertical-align:centre;text-align:center;background: #A9A9A9;"  |  914.4 mm x 1219.2 mm (36" x 48")
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
| style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 3x4 (4 fasteners).jpg | link=http://rpm.rcabc.org/images/9/9f/Table_3.5_-_3x4_%284_fasteners%29.jpg | 300 px]] '''4 Fasteners'''  || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 3x4 (6 fasteners).jpg | link=http://rpm.rcabc.org/images/d/d1/Table_3.5_-_3x4_%286_fasteners%29.jpg | 300 px]] '''6 Fasteners'''  || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 3x4 (7 fasteners).jpg | link=http://rpm.rcabc.org/images/e/ed/Table_3.5_-_3x4_%287_fasteners%29.jpg | 300 px]] '''7 Fasteners'''
 +
|-
 +
|}
 +
 
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1000px;" | {{hilite | '''Table 3.3.2.1.-F.<br>Minimum Mechanical Fastening Patterns for<br>Panels 609.6 mm x 2438.4 mm (24" x 96")''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Click on drawing to expand)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: center; margin-left: 20pt; margin-right: auto; border: none;"
 +
|
 +
! colspan="3" rowspan="1" style="width: 500px;vertical-align:centre;text-align:center;background: #A9A9A9;"  |  609.6 mm x 2438.4 mm (24" x 96")
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
|  style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 2x8 (5 fasteners).jpg | link=http://rpm.rcabc.org/images/3/39/Table_3.5_-_2x8_%285_fasteners%29.jpg | 300 px]] '''5 Fasteners'''  || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 2x8 (6 fasteners).jpg | link=http://rpm.rcabc.org/images/6/69/Table_3.5_-_2x8_%286_fasteners%29.jpg | 300 px]] '''6 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 2x8 (8 fasteners).jpg | link=http://rpm.rcabc.org/images/7/76/Table_3.5_-_2x8_%288_fasteners%29.jpg | 300 px]] '''8 Fasteners'''
 +
|-
 +
|}
 +
 
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1000px;" | {{hilite | '''Table 3.3.2.1.-G.<br>Minimum Mechanical Fastening Patterns for<br>Panels 609.6 mm x 1219.2 mm (24" x 48")''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 3.3.2.1.<br><small>(Click on drawing to expand)</small>|| 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: center; margin-left: 20pt; margin-right: auto; border: none;"
 +
|
 +
! colspan="3" rowspan="1" style="width: 500px;vertical-align:centre;text-align:center;background: #A9A9A9;"  |  609.6 mm x 1219.2 mm (24" x 48")
 +
|-
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Field
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Perimeter
 +
! colspan="1" rowspan="1" style="width: 300px; vertical-align:top;text-align:center;"  | Corner
 +
|-
 +
| style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 2x4 (4 fasteners).jpg | link=http://rpm.rcabc.org/images/f/f9/Table_3.5_-_2x4_%284_fasteners%29.jpg | 300 px]] '''4 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 2x4 (4 fasteners).jpg | link=http://rpm.rcabc.org/images/f/f9/Table_3.5_-_2x4_%284_fasteners%29.jpg | 300 px]] '''4 Fasteners''' || style="width: 100px;vertical-align:top;text-align:center;background: #fff;"  | [[File:Table 3.5 - 2x4 (5 fasteners).jpg | link=http://rpm.rcabc.org/images/b/b3/Table_3.5_-_2x4_%285_fasteners%29.jpg | 300 px]] '''5 Fasteners'''
 +
|-
 +
|}
 +
 
 +
===3.3.3. Conventionally Insulated Roof Systems===
 +
(The requirements in [[#3.3.2. All Systems | Subsection 3.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====3.3.3.1. General Requirements====
 +
 
 +
<ol>
 +
<li>New and fully replaced ''conventionally insulated systems'' must be secured to conform to the Building Code, and shall be capable of resisting displacement by ''Specified Wind Loads'' using
 +
<ol>
 +
<li>a ''Tested Assembly'',
 +
<li>an ''Assembly with Proven Past Performance'', or
 +
<li>an ''assembly'' with custom-engineered securement.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===3.3.4. Uninsulated Systems===
 +
(The requirements in [[#3.3.2. All Systems | Subsection 3.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====3.3.4.1. General Requirements====
 +
 
 +
<ol>
 +
<li>All uninsulated ''roof systems'' that are not secured with ballast shall conform to the requirements in [[#3.1.4.1. Securement Against Specified Wind Loads | Article 3.1.4.1.]] for ''conventionally insulated systems''.
 +
<li>Uninsulated ''roof systems'' secured with {{hilite | stone || 2025-October-25 }}{{strike| gravel || 2024-October-25 }} ballast, pavers or both must be installed following the requirements in [[#3.3.5.1. Ballasted Systems | Article 3.3.5.1.]]
 +
</li></ol>
 +
 
 +
===3.3.5. Protected Roof Systems===
 +
(The requirements in [[#3.3.2. All Systems | Subsection 3.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====3.3.5.1. Ballasted Systems====
 +
(Note: the reader must consult the Design and Application requirements for ''protected roof systems'' in [[#Part 9 - Roof Field (Membrane Systems) | Part 9]]).
 +
 
 +
<ol>
 +
<li>''Roof systems'' secured with {{hilite | stone || 2025-October-25 }}{{strike| gravel || 2024-October-25 }} ballast, pavers, or both must be constructed to resist displacement by ''Specified Wind Loads''.
 +
<li>To facilitate resistance to ''Specified Wind Loads'',
 +
<ol>
 +
<li>a filter fabric is required beneath {{hilite | stone || 2025-October-25 }}{{strike| gravel || 2024-October-25 }} or paver ballast,
 +
<li>a protection layer is required beneath crushed ballast, and
 +
<li>{{hilite | stone || 2025-October-25 }}{{strike| gravel || 2024-October-25 }} ballast must conform to the specified design.
 +
</li></ol>
 +
<li>{{hilite | Stone || 2025-October-25 }}{{strike| gravel || 2024-October-25 }} ballast shall
 +
<ol>
 +
<li>be washed (clean) round or crushed {{hilite | material || 2025-October-25 }}{{strike| stone || 2024-October-25 }}, and
 +
<li>be selected (according to the specified design) to resist flotation and ''Specified Wind Loads''.
 +
</li></ol>
 +
<li>Pavers and unit-type masonry, such as brick or {{hilite | paving stones || 2025-October-25 }}, must be supported by
 +
<ol>
 +
<li>purpose-made pedestals conforming to the requirements in [[#3.2.2.4. Pavers and Pedestals | Article 3.2.2.4.]],
 +
<li>a proprietary drainage layer overlaid with a filter fabric mat, or
 +
<li>a drainage layer of loose aggregate (such as pea gravel) measuring at least 25.4 mm (1”) in depth, installed over a filter fabric.
 +
</li></ol>
 +
<li>Pedestals
 +
<ol>
 +
<li>must permit at least 12.7 mm (1/2″) of vertical separation between the paver and the underlying substrate, to provide airflow for drying surfaces and assist in leveling,
 +
<li><span class="principles">should not impede the flow of water or air, and</span>
 +
<li><span class="principles">should uniformly distribute the dead load of pavers, and other unit masonry products, as well as predicted live loads</span>.
 +
</li></ol>
 +
<li>Pavers must be tied together when specified by the design.
 +
<li>{{hilite | When a ''vegetated roof system'' is used as ballast, the installation shall conform to|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#PART_10 {{hilite |Part 10|| 2025-October-25 }}] {{hilite |of the “RGC Standard for Vegetated Roofs” (See also|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#PART_3 {{hilite |Part 3|| 2025-October-25 }}] {{hilite |in the same Standard, concerning design requirements)|| 2025-October-25 }}.
 +
</li></ol>
 +
 
 +
===3.3.6. Roof Replacement and Alterations===
 +
====3.3.6.1. Complete Roof System Replacement====
 +
 
 +
<ol>
 +
<li>''Roof systems'' that are removed and replaced in their entirety (excluding the air or vapour controls, which may be left in place at the discretion of the ''Design Authority'') must be secured following the requirements for new ''roof systems''.
 +
</li></ol>
 +
 
 +
====3.3.6.2. Partial Roof Replacement====
 +
 
 +
<ol>
 +
<li>When only a portion of an existing ''roof system'' is specified for replacement, the new materials must be secured to resist ''Specified Wind Loads'' (See also [[#1.1.4. Replacement and Alterations | Subsection 1.1.4., "Replacement and Alterations"]]).
 +
<li>Mechanical fastening is the most reliable method for securing new materials installed over an existing ''roof assembly'', but when mechanical fastening is not practicable, the ''system'' of securement must be
 +
<ol>
 +
<li>custom-engineered, or
 +
<li>patterned after a ''roof assembly'' with ''Proven Past Performance'', in keeping with the requirements in [[#3.1.4.3. Specifying an Assembly with Proven Past Performance | Article 3.1.4.3.]]
 +
</ol></li>
 +
</ol></li>
 +
 
 +
<hr>
 +
<div id=PART_4></div>
 +
 
 +
=Part 4 - Materials=
 +
==Section 4.1. Design==
 +
===4.1.1. General===
 +
====4.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====4.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>''Primary Material'' means a material used in a roof or grade-level waterproofing ''system'' that protects a building interior from water.  ''Primary materials'' are often exposed to the weather (protected membranes are an exception), and therefore also protect ''secondary materials'' from damage.  Membranes, metal panels, asphalt shingles, and cedar shakes and shingles, form the core body of materials classified as ''primary''.
 +
<li>''Secondary Material'' means one which forms part of a ''waterproofing system'' or ''water-shedding system'', and which may affect the wind resistance characteristics of the entire ''assembly'' but is not necessarily exposed to the weather.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
==Section 4.2. Materials==
 +
===4.2.1. Material Properties===
 +
====4.2.1.1. Use of Accepted Materials====
 +
(For limitations and exclusions pertaining to materials, see [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]])
 +
 
 +
<ol>
 +
<li>All materials installed by the ''Contractor'', for new construction or alterations, must be
 +
<ol>
 +
<li>newly manufactured (except for reusable insulation; see [[#7.1.3.2. General Requirements | Article 7.1.3.2.]]), and may not be recycled without the expressed, written consent of the '''''Guarantor''''',
 +
<li>accepted by the '''''RoofStar Guarantee Program''''', and
 +
<li>manufactured by, or listed as acceptable to, the manufacturer of the ''primary material''.
 +
</li></ol>
 +
<li>All uninstalled materials must be
 +
<ol>
 +
<li>protected from weather with wrappers approved or recommended by the ''manufacturer'',
 +
<li>properly stacked, and
 +
<li>secured above ground or on the roof surface.
 +
</li></ol>
 +
<li>All installed roofing materials that are susceptible to moisture damage must be made watertight by the end of each workday.
 +
<li>Metals and fasteners must be compatible with each other, to avoid galvanic corrosion which can occur when dissimilar metals contact each other.
 +
</li></ol>
 +
 
 +
==Section 4.3. Application==
 +
===4.3.1. Guarantee Term Requirements===
 +
====4.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====4.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===4.3.2. All Systems===
 +
====4.3.2.1. Application of New Materials====
 +
 
 +
<ol>
 +
<li>All new materials installed as part of the ''roof system'' shall conform to the ''manufacturer's'' published requirements, unless superseded by this Standard.
 +
</li></ol>
 +
 
 +
<hr>
 +
<div id=PART_5></div>
 +
 
 +
=Part 5 - Deck and Wall Overlays=
 +
(See [[Notes to PVC Standard#A-5| Note A-5]])
 +
 
 +
==Section 5.1. Design==
 +
===5.1.1. General===
 +
====5.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====5.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].
 +
</li></ol>
 +
 
 +
===5.1.2. Guarantee Term Requirements===
 +
====5.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====5.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===5.1.3. All Systems===
 +
====5.1.3.1. Required Use of Overlays====
 +
(See [[Notes to PVC Standard#A-5.1.3.1.| Note A-5.1.3.1.]]; see also Part 9 and Part 10 for substrate preparation requirements)
 +
 
 +
<ol>
 +
<li>A deck or wall overlay must be specified when
 +
<ol>
 +
<li>a thermal layer is required by the Building Code,
 +
<li>{{hilite | it is required as part of a ''Tested Assembly'', or || 2023-June-16 }}
 +
<li>the conditions of the deck or wall are unsuitable for receiving roofing materials.
 +
</li></ol>
 +
<li><span class="principles">When a roof design includes any type of ''overburden'', the ''deck'' overlay on steel ''decks'', or on wood ''decks'' less than 25.4 mm (1”) thick, should be at least 15.88 mm (5/8”) thick, to stiffen the supporting surface and reduce ''deck'' deflection</span>.
 +
</li></ol>
  
===='''A-3.1.4.1. Securement Against Specified Wind Loads'''====
+
==Section 5.2. Materials==
:The acronyms ("AARS", "PARS", and "MARS") are derived from the test method CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition). Mechanically Attached Roof Systems ("MARS") refers to ''roof systems'' that are secured through the membrane with screw fasteners and plates. Adhesive Applied Roof Systems ("AARS") denote roofs where all the constituent layers are adhered to each other, and to the supporting ''roof deck''.  However, Partially Attached Roof Systems ("PARS") can be constructed at least four ways since the layers secured by mechanical fasteners or adhesives is largely variable.  The illustrations below show the possibilities, all of which may be tested by a ''manufacturer'' to determine the best possible resistance to wind loads.
+
(See [[Division_C | Division C, "Accepted Materials"]])
<div class="col-md-12">
+
 
<div class="col-md-3">
+
===5.2.1. Material Properties===
{| class="wikitable"; table style="background-color:white"; border="#A9A9A9;"
+
====5.2.1.1. Suitability of Overlays====
|+ <small>Figure 3.1.4.1.-A</small>
+
 
 +
<ol>
 +
<li>Deck and wall overlays must be
 +
<ol>
 +
<li>listed in [[Division_C | Division C]],
 +
<li>acceptable to the ''manufacturer'', and
 +
<li>suitable for, and compatible with, any membrane or panel application.
 +
</li></ol>
 +
<li>When plywood is used as a deck overlay, only tongue-and-groove plywood is acceptable and must be
 +
<ol>
 +
<li>at least 12.7 mm (1/2”) thick when installed over a mass timber deck, or
 +
<li>at least 15.88 mm (5/8”) thick, when the roof supports overburden.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====5.2.1.2. Thermal Barrier====
 +
 
 +
<ol>
 +
<li>When the Code having jurisdiction requires a thermal barrier, any material selected from [[Division_C | Division C]] must be suitable for the purpose.
 +
</li></ol>
 +
 
 +
====5.2.1.3. Overlays for Walls====
 +
 
 +
<ol>
 +
<li>In addition to overlays listed in [[Division_C | Division C]], ''walls'' may be overlaid with
 +
<ol>
 +
<li>plywood, provided the plywood is least 12.7 mm (1/2”) thick and is pressure-treated when applied over concrete or concrete masonry units (CMU), or
 +
<li>fibre-mat reinforced cement boards with a minimum thickness of 9.53 mm (3/8"), conforming to ASTM C1325 (latest edition), "Standard Specification for Fiber-Mat Reinforced Cementitious Backer Units".
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====5.2.1.4. Fasteners====
 +
 
 +
<ol>
 +
<li>Refer to [[#3.2.2.1. Fasteners | Article 3.2.2.1.]]
 +
</li></ol>
 +
 
 +
==Section 5.3. Application==
 +
(This Section shall be read in conjunction with the requirements for substrate preparation in [[#Part 9 - Roof Field (Membrane Systems) | Part 9]] and [[#Part 10 - Perimeters and Walls | Part 10]])
 +
 
 +
===5.3.1. Guarantee Term Requirements===
 +
====5.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====5.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===5.3.2. All Systems===
 +
====5.3.2.1. Support, Arrangement, and Securement of Deck Overlays====
 +
 
 +
<ol>
 +
<li>''Deck'' overlays must be
 +
<ol>
 +
<li>fully or intermittently supported along all edges by the ''deck'', and
 +
<li>installed in a staggered pattern (offset) 304.8 mm (12") from adjacent board rows (a minus offset tolerance of 50.8 mm (2") maximum will be permitted to compensate for variance in the manufacturer's tolerance of differing board widths and lengths).
 +
</li></ol>
 +
<li>''Deck'' overlays shall be affixed to the ''deck'' with
 +
<ol>
 +
<li>mechanical fasteners conforming to the requirements in [[#3.2.2.1. Fasteners | Article 3.2.2.1.]],
 +
<li>polyurethane foam adhesives acceptable to the ''manufacturer'' and conforming to the requirements in [[#3.2.2.2. Adhesives | Article 3.2.2.2.]], or
 +
<li>a combination of mechanical fasteners and polyurethane foam adhesives.
 +
</li></ol>
 +
<li>When mechanical fasteners are used to secure deck overlays, the minimum number of fasteners (in combination with plates) shall be
 +
<ol>
 +
<li>four (4), for every 1219.2 mm x 2438.4 mm (48" x 96") sheet, or
 +
<li>as specified by a ''Tested Assembly'', when part of a "PARS" or "MARS" ''conventionally insulated system''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====5.3.2.2. Overlays on Steel Decks====
 +
 
 +
<ol>
 +
<li>RoofStar-accepted ''deck'' overlay boards used as a thermal barrier to achieve a specific fire rating must conform to the applicable code and insurance requirements for the ''roof system''.
 +
<li>When the ''roof system'' is uninsulated, the ''deck'' must be overlaid with at least one 12.7 mm (1/2”) thick layer of
 +
<ol>
 +
<li>moisture resistant gypsum core ''deck'' overlay board, or
 +
<li>plywood.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====5.3.2.3. Overlays on Concrete Decks====
 +
 
 +
<ol>
 +
<li>A ''deck'' overlay board is not mandatory on a concrete supporting ''deck'', but when it is specified, it must be installed to conform to the requirements in this Part.
 +
</li></ol>
 +
 
 +
====5.3.2.4. Overlays on Wood Decks====
 +
 
 +
<ol>
 +
<li>A mechanically fastened overlay board is required for any deck structure that does not meet the deck fastening criteria set out in [[#2.1.5.3. All Wood Roof Decks | Article 2.1.5.3.]].
 +
</li></ol>
 +
 
 +
====5.3.2.5. Support, Arrangement, and Securement of Wall Overlays====
 +
 
 +
<ol>
 +
<li>''Wall'' overlay panels must be
 +
<ol>
 +
<li>mechanically fastened with screw fasteners spaced no more than 304.8 mm (12”) O.C., both vertically and horizontally; fasteners must align with structural supports, and shall be placed
 +
<ol>
 +
<li>at the perimeters,
 +
<li>at the corners, and
 +
<li>in the field, or
 +
</li></ol>
 +
<li>adhered with a polyurethane adhesive, applied with a continuous z-patterned ribbon spaced no less than 304.8 mm (12”) apart.
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
 
 +
<hr>
 +
<div id=PART_6></div>
 +
 
 +
=Part 6 - Air and Vapour Controls=
 +
(See [[Notes to PVC Standard#A-6 | Note A-6]])
 +
 
 +
==Section 6.1. Design==
 +
===6.1.1 General===
 +
====6.1.1.1. Scope====
 +
(See [[Notes to PVC Standard#A-6.1.1.1. | Note A-6.1.1.1.]])
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====6.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  {{hilite | Additionally, the following terms are used in this Part || 2024-June-15 }}:
 +
<ol>
 +
<li>{{hilite | ''Air barrier'' means a material that is manufactured and tested to prohibit the passage of air through that material || 2024-June-15 }}.
 +
<li>{{hilite | ''Continuity'' means a sealed, resistive, continuous connection || 2024-June-15 }}
 +
<ol>
 +
<li>{{hilite | between ''control layers'' that have the same function, and || 2024-June-15 }}
 +
<li>{{hilite | between a ''control layer'' and another material or object it joins to (i.e., a roof drain or penetration) || 2024-June-15 }}.
 +
</li></ol>
 +
<li>{{hilite | ''Control layer'' means a material used in a ''roof assembly'' or ''wall assembly'', that is manufactured and tested to resist or control the movement of air, vapour, or liquid water into or through that assembly || 2024-June-15 }}.
 +
<li>{{hilite | ''Vapour retarder'' means a material that is manufactured and tested to prohibit or regulate the passage of water vapour through that material || 2024-June-15 }}.
 +
<li>{{hilite | ''Water resistive barrier'' (WRB) means a material that is manufactured and tested to resist the transmission of liquid water through the material, and is usually used in wall assemblies || 2024-June-15 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===6.1.2. Guarantee Term Requirements===
 +
====6.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====6.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===6.1.3. All Systems===
 +
====6.1.3.1. Responsibility for Design====
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' is responsible to specify
 +
<ol>
 +
<li>air and vapour control materials,
 +
<li>the placement of continuous air and vapour ''control layers'' in relation to a ''roof system'' and its components, and
 +
<li>the selection of suitable materials for that application (See [[Notes to PVC Standard#A-6.1.3.1. | Note A-6.1.3.1.]]).
 +
</li></ol>
 +
<li><span class="recommended">The ''Design Authority'' is urged to review and consider the performance characteristics of materials available for such applications</span>.
 +
<li>Coverage under the '''''RoofStar Guarantee''''' shall be as described in [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]].
 +
<li>Notwithstanding coverage provisions in Division A, neither the '''''RoofStar Guarantee Program''''' nor the ''Contractor'' will accept any responsibility for damage to, or failure of, the ''roof system'' caused by the use or absence of air or vapour ''control layers''.
 +
</li></ol>
 +
 
 +
====6.1.3.2. Continuity {{hilite | of Control Layers || 2024-June-15 }} {{strike| Between Building Enclosure Systems || 2023-June-15 }}====
 +
 
 +
<ol>
 +
<li>The ''Design Authority'', and trades constructing walls and roofs, are jointly responsible for making proper connections (continuity) between air and vapour control ''systems'', including the transitions between ''wall systems'' and ''roof systems''.
 +
<li>{{hilite | Where air, vapour, or water ''control layers'' intersect a ''roof drain'', ''overflow drain'', ''scupper drain'', or penetration, the intersection must be designed for ''continuity'', and drawings must detail the execution of ''continuity'' for the ''Contractor'' || 2024-June-15 }}.
 +
<li>{{hilite | ''Overflow drains'' and ''scupper drains'' that penetrate ''wall assemblies'' must be designed and drawn to prevent air intrusion from the outside environment (Ref. || 2024-June-15 }} [[#3.1.5.1. Securement against Specified Wind Loads | Article 3.1.5.1.]]).
 +
</li></ol>
 +
 
 +
====6.1.3.3. Use of Air Control Materials====
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' is responsible for the selection of air control materials ({{hilite |some air ''control layers'' are considered vapour permeable, others vapour-impermeable || 2020-October-22 }}); <span class="recommended"> ''roof systems'' intended to qualify for a</span> '''''RoofStar Guarantee''''' <span class="recommended">should be designed according to the regulatory design and installation requirements for effective, continuous air control ''systems''</span>.
 +
<li><span class="principles">{{hilite | All materials selected by the ''Design Authority'' should conform to the material and performance characteristics required in the "British Columbia Building Code", Division B, || 2024-June-15 }} [https://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp5s54 Article 5.4.1.2., "Air Barrier System Properties"]</span>.
 +
</li></ol>
 +
 
 +
====6.1.3.4. Use of Vapour Control Materials====
 +
 
 +
<ol>
 +
<li>Because continuous vapour ''control layers'' may be needed to limit “water vapour transmission and condensation, burn protection, and severe climatic conditions” (National Energy Code of Canada for Buildings 2020, [https://nrc-publications.canada.ca/eng/view/ft/?id=af36747e-3eee-4024-a1b4-73833555c7fa Article 5.2.5.3.(1), "Other Considerations"]; see also the "British Columbia Building Code", Division B, [https://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp5s55 Article 5.5.1.1., "Required Resistance to Vapour Diffusion"]), they are considered discretionary and must be specified by the ''Design Authority''.
 +
<li>Where continuous vapour ''control layers'' are required and specified by Code, the '''''RoofStar Guarantee Program''''' requires that a suitable vapour control ''system'' be selected by the ''Design Authority'' and properly installed by the ''Contractor'' in conformity with the vapour ''control layer'' manufacturer’s published instructions, and with the ''Design Authority’s'' specified details.
 +
</li></ol>
 +
 
 +
====6.1.3.5. High-humidity Building Interiors====
 +
 
 +
<ol>
 +
<li><span class="recommended">Careful consideration should be given to the performance characteristics of air and vapour ''control layers'' when specifying such a membrane for ''roof systems'' constructed over high-humidity building interiors, which may be susceptible to the accumulation of moisture within the ''roof system'' unless effective air and vapour controls are installed</span>; these building interiors include (but are not limited to)
 +
<ol>
 +
<li>swimming pools,
 +
<li>commercial laundry facilities,
 +
<li>large  aquariums, and
 +
<li>paper mills.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====6.1.3.6. Reserved====
 +
 
 +
==Section 6.2. Materials==
 +
===6.2.1. Material Properties===
 +
====6.2.1.1. Compatibility with Other Materials====
 +
 
 +
<ol>
 +
<li>The material selected for air and vapour control layers must be compatible with any other materials in the roof or ''wall'' ''assembly'' to which the control layer may come in contact, including (without limitation) contact with primers and adhesives, substrates, solvents, and cleaners.
 +
</li></ol>
 +
 
 +
====6.2.1.2. Permitted Materials for RoofStar Guarantee====
 +
(See [[Notes to PVC Standard#A-6.2.1.2. | Note A-6.2.1.2.]])
 +
 
 +
<ol>
 +
<li>While responsibility for the selection of suitable air and vapour control layers rests with the ''Design Authority'', a roof designed and built to qualify for a '''''RoofStar Guarantee''''' shall not include
 +
<ol>
 +
<li>polyethylene sheet plastic, or
 +
<li>bitumen-impregnated kraft paper.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====6.2.1.3. Puncture Resistance and Thickness====
 +
 
 +
<ol>
 +
<li><span class="recommended">Air and vapour controls should be installed over a continuous smooth plane, regardless of a material's ability to span voids or spaces in the deck</span>.
 +
<li><span class="principles">Fully supported air and vapour control layers should possess a minimum published static puncture resistance rating of 150 N (34 lbf)</span> (Ref. CGSB-37.56-M for both test method and standard limits) <span class="principles">and be either self-adhering or torch-applied; a high puncture resistance is necessary for the membrane to withstand accidental damage during construction.</span>
 +
<li>Where no ''deck'' overlay board is installed and the air and vapour control layers are partially unsupported (for example, on a steel ''deck''), the control layers must possess a published static puncture resistance of at least 400 N (90 lbf).
 +
<li><span class="recommended">Should the air or vapour control layers be used as a temporary roof during ''project'' construction by either the ''Contractor'' or by other trades, a minimum 2 mm thick bituminous membrane is recommended</span>.
 +
</li></ol>
 +
 
 +
====6.2.1.4. Self-adhered and Torch-applied Materials====
 +
 
 +
<ol>
 +
<li><span class="principles">{{hilite | Self-adhering or adhesive-applied materials should be considered as alternatives to torch-applied membranes when the substrate to which they will be applied is combustible, or when nearby structures, openings or materials present a fire hazard|| 2020-July-3 }}.
 +
<li></span>{{hilite | A suitable separation or overlay material may be used as protection from open flame is acceptable; the application of materials to a combustible surface, using a torch, is strictly prohibited|| 2020-July-3 }}.
 +
</li></ol>
 +
 
 +
====6.2.1.5. Vapour Controls for Concrete Decks====
 +
 
 +
<ol>
 +
<li>Because curing concrete releases considerable moisture that can compromise the performance of a ''roof system'', a vapour control layer installed on new concrete ''decks'' (28 days or older) must be selected to prevent condensation inside the ''roof system''.
 +
<li><span class="recommended">A membrane with a permeability of 0.01 perms (Class I) is recommended for applications on concrete substrates, but the selection of vapour control materials is nevertheless the responsibility of the ''Design Authority''</span>.
 +
</li></ol>
 +
 
 +
==Section 6.3. Application==
 +
===6.3.1. Guarantee Term Requirements===
 +
====6.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====6.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===6.3.2. All Systems===
 +
====6.3.2.1. Continuity and Support====
 +
 
 +
<ol>
 +
<li>The ''Contractor'' must
 +
<ol>
 +
<li>ensure that air and vapour ''control layers'' in the ''roof system'' field, and at perimeters, are installed to provide at least 101.6 mm (4”) of overlap, for ''continuity'' of matching layers in adjacent assemblies,
 +
<li>{{hilite | ensure that air and vapour control layers are sealed to penetrations and drains that pass through or enter the ''roof assembly'', || 2023-June-16 }} and
 +
<li>seal all control layers to matching layers in adjacent assemblies (i.e., walls), when a roof is replaced.
 +
</li></ol>
 +
<li>Installation of all air and vapour control materials must be {{hilite | smooth and uniform, without wrinkles or fish-mouths|| 2020-July-3 }}, and must {{hilite | also|| 2020-July-3 }} conform to the manufacturer’s published requirements and the ''Design Authority’s'' design details.
 +
<li>All air and vapour control membrane side and end laps must be fully supported, in the field and at transitions with curbs, ''parapets'', ''walls'', and penetrations.
 +
<li>{{hilite | When self-adhered membranes are applied directly to a steel supporting ''deck'',|| 2021-February-7 }}
 +
<ol>
 +
<li><span class="principles">{{hilite | membranes should be oriented parallel to the direction of ''deck'' flutes|| 2021-February-7 }}</span>, and
 +
<li>{{hilite | membrane laps and changes in plane must be supported by deck flutes, or by flat metal supports secured to the deck to span gaps|| 2021-February-7 }}.
 +
</ol></li>
 +
<li>When metal supports are used to span gaps between steel deck flutes, they must be
 +
<ol>
 +
<li>{{hilite | fabricated from pre-finished steel with a thickness no less than 24-gauge|| 2021-February-7 }}, and
 +
<li>{{hilite | secured to the ''deck'' with no fewer than two (2) compatible screw fasteners per flute|| 2021-February-7 }} ({{hilite | See Figure 6.3.2.-A and Figure 6.3.2.-B|| 2021-February-7 }}).
 +
</ol></li>
 +
<li>{{hilite | ''Roof drains'', ''overflow drains'', ''scupper drains'', and penetrations must be detailed where they intersect an air, vapour, or water ''control layer'', to provide ''continuity'' || 2024-June-15 }}.
 +
</ol></li>
 +
 
 +
====6.3.2.2. Torch-applied Materials====
 +
 
 +
<ol>
 +
<li>{{hilite | The application of materials to an unprotected combustible material, using a torch, is strictly prohibited|| 2020-July-3 }}.
 +
<li>{{hilite | All combustible materials MUST be protected from open flame by an acceptable separation or overlay material; this includes, without limitation, combustible materials|| 2020-July-3 }}
 +
<ol>
 +
<li>{{hilite | on ''decks'', ''walls'', blocking, and canted edges|| 2020-July-3 }}, and
 +
<li>{{hilite | that are hidden or obscured within voids, cracks, or orifices|| 2020-July-3 }}.
 +
</li></ol>
 +
<li>{{hilite | When a torch-applied membrane is specified over combustible materials, all joints between overlay panels, and at roof-wall transitions, must be sealed with the primary membrane manufacturer’s approved self-adhered membrane or tapes|| 2020-July-3 }}.
 +
<li>{{hilite | Where torch-applied membranes are not permitted or desirable, the installation of bituminous air and vapour control layers should align with the approaches described and required in [[#10.3.8. Alternative Approaches to Sheet Membrane Flashing | Subsection 10.3.8., "Alternative Approaches to Sheet Membrane Flashing"]]|| 2020-July-3 }}.
 +
</li></ol>
 +
 
 +
====6.3.2.3. Securement on Slopes====
 +
 
 +
<ol>
 +
<li><span class="principles">Self-adhered membranes applied to slopes greater than 1:6 (2” in 12”) should be additionally secured with mechanical fasteners in locations where slippage may occur, to counter-act material displacement resulting from temperatures that exceed the membrane’s service temperature</span>.
 +
</li></ol>
 +
<br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 6.3.2.1.-A Air, Vapour Controls Over Steel Deck<br>With Metal Support'''<br>Forming Part of Sentence 6.3.2.1.(5)<br><small>(Click to expand illustration)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 6.3.2.1.-B Air, Vapour Controls Over Steel Deck<br>With Deck Overlay Panel'''<br>Forming Part of Sentence 6.3.2.1.(5)<br><small>(Click to expand illustration)</small> || 2025-October-25 }}
 +
|-
 +
| [[File:Figure 6.3.1-1.jpg | link=https://rpm.rcabc.org/images/5/54/Figure_6.3.1-1.jpg | 350 px]] || [[File:Figure 6.3.1-2.jpg | link=https://rpm.rcabc.org/images/d/d0/Figure_6.3.1-2.jpg | 350 px]]
 +
|}
 +
 
 +
====6.3.2.4. Reserved====
 +
 
 +
<hr>
 +
 
 +
<div id=PART_7></div>
 +
 
 +
=Part 7 - Insulation=
 +
==Section 7.1. Design==
 +
===7.1.1. General===
 +
====7.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====7.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part: 
 +
<ol>
 +
<li>''Heat-resistant insulation'' means insulation that resists heat and will not physically or chemically change when exposed to heat greater than 70°C (158°F), including {{hilite | heat from|| 2021-June-30 }} liquefied bitumen.  Insulation boards of this type include fibreboard, polyisocyanurate, and mineral fibre ("wool").  Note that "heat-resistant" does not mean or even infer 'fire-proof'.  While some heat-resistant insulation materials will resist burning for a  time, only mineral fibre insulation will not burn.
 +
<li>''Heat-sensitive insulation'' means insulation that may be physically or chemically altered when exposed to heat greater than 70°C (158°F) — for example, heat from a torch or from liquefied bitumen.  Heat-sensitive insulation includes EPS, XPS and polyurethane.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===7.1.2. Guarantee Term Requirements===
 +
====7.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====7.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>incorporate crickets at curbs and sleepers that impede drainage or are wider or longer than 1219.2 mm (48”), to provide positive slope to drains.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 7.1.2.3. RoofStar Vegetated Roof Guarantee || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the supporting ''roof assembly'' shall
 +
<ol>
 +
<li>comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''',
 +
<li>be acceptable to the ''manufacturer'' as support for a ''vegetated roof system'', and
 +
<li>comply with the related requirements in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”].
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===7.1.3. All Systems===
 +
====7.1.3.1. Responsibility for Design====
 +
(See [[Notes to PVC Standard#A-7.1.3.1.| Note A-7.1.3.1.]])
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' is responsible to ensure the design conforms to the Building Code and any other applicable requirements, with respect to
 +
<ol>
 +
<li>the use of a thermal barrier between the ''roof deck'' and the insulation ''system'', and
 +
<li>the minimum required thermal resistance of the insulation ''system''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.1.3.2. General Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | Selected board insulation products may be used within the membrane ''roof systems'', provided the panels are listed in || 2023-June-16 }} [[Division_C | Division C]], {{hilite | and conform to the material specifications in || 2023-June-16 }} [[#Section 7.2. Materials | Section 7.2.]]
 +
</li></ol>
 +
 
 +
====7.1.3.3. Use of Existing Insulation====
 +
 
 +
<ol>
 +
<li>Existing insulation on a roof may be reused (it will be excluded from coverage under the '''''Guarantee''''', which applies only to new materials), provided
 +
<ol>
 +
<li>the ''Design Authority'' has specified its reuse, and
 +
<li>the condition of the insulation is acceptable to the ''Design Authority'' as suitable to satisfy the requirements of the Building Code.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.1.3.4. Effective Thermal Resistance and Layering====
 +
{{strike| (See [[Notes to PVC Standard#A-7.1.3.4.| Note A-7.1.3.4.]]) || 2024-October-28 }}
 +
 
 +
<ol>
 +
<li>Insulation ''assemblies'' with a cumulative thermal resistance greater than RSI-2.64 (R-15) (based on published LTTR values measured at 24°C) must be installed in multiple layers that are offset and staggered (See [[#Section 7.3. Application | Section 7.3., "Application"]]).
 +
<li>In a multi-layered ''assembly'', any single layer of insulation may have a thermal resistance greater than RSI-2.64 (R-15) provided no one layer exceeds 60% of the cumulative thermal resistance of the combined ''assembly'' of insulation, measured together with the thermal resistance of insulation overlay boards (See {{hilite | '''Figure 7.1.3.4.-A'''|| 2025-October-25 }}).
 +
<li><span class="recommended">{{hilite | Notwithstanding Sentence (2) above, a maximum thickness of 101.4 mm (4”) per layer of insulation is recommended, to reduce the potential for insulation panel movement, in which may result in poor ''roof system'' performance, durability, and thermal resistance || 2025-October-25 }}</span> (See [[Notes to PVC Standard#A-7.1.3.4.(3) | Note A-7.1.3.4.(3)]]).
 +
<li>{{hilite | At intersections with insulated curbs and walls, insulation joints at the roof-wall interface must be offset and staggered to minimize or eliminate thermal bridging (See {{hilite | '''Figure 7.3.2.2.-A)''' || 2025-October-25 }}. || 2023-June-16 }}
 +
</li></ol>
 +
<br>
 +
::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.3.4.-A Effective Thermal Resistance and Layering''' || 2025-October-25 }}<br>{{hilite | Forming Part of Sentence 7.1.3.4.(2) || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:7.1 Insulation Layering.jpg|link=http://rpm.rcabc.org/images/d/d4/7.1_Insulation_Layering.jpg | 550 px]]
 +
|}
 +
 
 +
===7.1.4. Conventionally Insulated Systems===
 +
(The requirements in [[#7.1.3. All Systems | Subsection 7.1.3., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====7.1.4.1. Reuse of Insulation for Membrane Replacement====
 +
 
 +
<ol>
 +
<li>{{hilite | When a roof is specified for membrane replacement only, the existing insulation may be left in place (Subject to the requirements in [[#1.1.4.3. Partial Roof Replacement | Article 1.1.4.3.]]), but will be excluded from coverage under the '''''Guarantee'''''. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
====7.1.4.2. Protection of Heat-sensitive Insulation====
 +
 
 +
<ol>
 +
<li>When ''heat-sensitive insulation'' is used in the primary thermal ''assembly'', it must be covered with a ''heat-resistant insulation'' at least 50.8 mm (2”) thick (See [[Notes to PVC Standard#A-7.1.4.2. | Note A-7.1.4.2.]]).
 +
</li></ol>
 +
 
 +
====7.1.4.3. Tapered Insulation and Crickets====
 +
 
 +
<ol>
 +
<li>{{hilite | Tapered insulation that is ''heat-sensitive'' and manufactured to cover the entire roof area (commonly referred to as a full slope or taper package) must be installed beneath at least one layer of flat board ''heat-resistant insulation'' with a minimum thickness of 50.8 mm (2”)|| 2021-June-30 }}.
 +
<li>{{hilite | Tapered insulation|| 2021-June-18 }}
 +
<ol>
 +
<li><span class="principles">{{hilite | may be located anywhere within the ''roof system''</span>|| 2021-June-18 }},
 +
<li><span class="principles">{{hilite | may be used in calculating the overall thermal performance of the ''insulation assembly'' but this is at the discretion of the ''Design Authority''|| 2021-June-30 }}</span> (See [[Notes to PVC Standard#A-7.1.3.4.| Note A-7.1.3.4.]]), and
 +
<li>{{hilite | must be installed in multiple soldiered layers when the overall thickness of the tapered ''insulation assembly'' is greater than 152.4 mm (6”)|| 2021-June-30 }}.
 +
</li></ol>
 +
<li>{{hilite | Crickets that provide no thermal resistance value to the ''roof system'' and are used only to promote drainage over limited areas of the roof|| 2021-June-30 }}
 +
<ol>
 +
<li><span class="principles">{{hilite | should be manufactured of ''heat-resistant insulation'', but|| 2021-June-30 }}</span> <span class="recommended">{{hilite | when crickets are manufactured from ''heat-sensitive insulation'' they should be covered with a layer of ''heat-resistant insulation'' at least 50.8 mm (2") thick|| 2021-June-30 }}</span>, and
 +
<li><span class="recommended">{{hilite | may be installed directly over a ''roof deck'', although this is not recommended|| 2021-June-30 }}</span> {{hilite | (See [[#Section 8.1. Design | Section 8.1., "Design"]], for overlay requirements)|| 2021-June-30 }}.
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.1.4.4. Insulating Drain Sumps====
 +
 
 +
<ol>
 +
<li><span class="principles">To minimize condensation around drains, drain sumps should be adequately insulated for the regional location of the building, regardless of how the average thermal resistance for the ''roof system'' is calculated</span> (See [[#11.1.3.1. Principles of Design | Article 11.1.3.1., "Principles of Design"]]).
 +
</li></ol>
 +
 
 +
====7.1.4.5. Use of Mineral Fibre Insulation====
 +
 
 +
<ol>
 +
<li>Bitumen-coated mineral fibre insulation
 +
<ol>
 +
<li>may be secured with adhesive (See {{hilite | '''Figure 7.1.4.5.-A''' || 2025-October-25 }}),
 +
<li>may be secured with screw-type fasteners and plates, but this is permissible only when the insulation is subsequently covered with a suitable insulation overlay panel (See {{hilite | '''Figure 7.1.4.5.-B''', '''Figure 7.1.4.5.-D''', '''Figure 7.1.4.5.-G''', and '''Figure 7.1.4.5.-H''' || 2025-October-25 }}; also [[#8.1.4.2. Use Over Mineral Fibre Insulation | Article 8.1.4.2.]]),
 +
<li>may be installed in multiple layers,
 +
<li>must be the top layer when multiple layers of mineral fibre insulation are specified (See {{hilite | '''Figure 7.1.4.5.-C''' || 2025-October-25 }}), and
 +
<li>must be covered with a suitable insulation overlay panel {{hilite | when mechanically fastened through the top-most surface or when || 2025-October-25 }} supporting an ''overburden'' (See {{hilite | '''Figure 7.1.4.5.-E''', '''Figure 7.1.4.5.-F''', '''Figure 7.1.4.5.-G''', and '''Figure 7.1.4.5.-H''' || 2025-October-25 }}; also refer to [[#8.1.4.2. Use Over Mineral Fibre Insulation | Article 8.1.4.2.]] {{hilite | concerning required overlays and use under ''overburden'' || 2025-October-25 }}).
 +
</li></ol>
 +
<br>
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-A Use of Mineral Fibre Insulation<br>One Layer (AD*)'''<br>Forming Part of Clause 7.1.4.5.(1)(1)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-B Use of Mineral Fibre Insulation<br>One Layer (MF*)'''<br>Forming Part of Clause 7.1.4.5.(1)(2)<br><small>(Click to expand)</small> || 2025-October-25 }}
 +
|-
 +
| [[File:Mineral Wool - Single layer (adhered).jpg | link=https://rpm.rcabc.org/images/3/31/Mineral_Wool_-_Single_layer_%28adhered%29.jpg | 350 px]] || [[File:Mineral Wool - Single layer (mechanically fastened).jpg | link=https://rpm.rcabc.org/images/b/b4/Mineral_Wool_-_Single_layer_%28mechanically_fastened%29.jpg | 350 px]]
 +
|}
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-C Use of Mineral Fibre Insulation<br>Two Layers (AD*)'''<br>Forming Part of Clause 7.1.4.5.(1)(4)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-D Use of Mineral Fibre Insulation<br>Two Layers (HYB*)'''<br>Forming Part of Clause 7.1.4.5.(1)(2)<br><small>(Click to expand)</small> || 2025-October-25 }}
 +
|-
 +
| [[File:Mineral Wool - 2 - layer (adhered).jpg | link=http://rpm.rcabc.org/images/4/4a/Mineral_Wool_-_2_-_layer_%28adhered%29.jpg | 350 px]] || [[File:Mineral Wool - 2-layer (hybrid).jpg | link=http://rpm.rcabc.org/images/a/a3/Mineral_Wool_-_2-layer_%28hybrid%29.jpg | 350 px]]
 +
|}
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-E Use of Mineral Fibre Insulation<br>Two Layers (MF*)'''<br>Forming Part of Clause 7.1.4.5.(1)(5)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-F Use of Mineral Fibre Insulation<br>Two Layers (AD* + Overburden('''<br>Forming Part of Clause 7.1.4.5.(1)(5)<br><small>(Click to expand)</small> || 2025-October-25 }}
 +
|-
 +
| [[File:Mineral Wool - 2-layer (mechanically fastened).jpg | link=http://rpm.rcabc.org/images/1/1d/Mineral_Wool_-_2-layer_%28mechanically_fastened%29.jpg | 350 px]] || [[File:Mineral Wool - 2 layer (adhered - overburden).jpg | link=http://rpm.rcabc.org/images/5/58/Mineral_Wool_-_2_layer_%28adhered_-_overburden%29.jpg | 350 px]]
 +
|}
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-G Use of Mineral Fibre Insulation<br>Two Layers (HYB* + Overburden)'''<br>Forming Part of Clause 7.1.4.5.(1)(5)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.1.4.5.-H Use of Mineral Fibre Insulation<br>Two Layers (MF* + Overburden)'''<br>Forming Part of Clause 7.1.4.5.(1)(5)<br><small>(Click to expand)</small> || 2025-October-25 }}
 +
|-
 +
| [[File:Mineral Wool - 2 layer (hybrid - overburden).jpg | link=http://rpm.rcabc.org/images/c/c2/Mineral_Wool_-_2_layer_%28hybrid_-_overburden%29.jpg | 350 px]] || [[File:Mineral Wool - 2 layer (mechanically fastened - overburden).jpg | link=http://rpm.rcabc.org/images/2/20/Mineral_Wool_-_2_layer_%28mechanically_fastened_-_overburden%29.jpg | 350 px]]
 +
|}
 +
 
 +
:::''*'' MF = Mechanically Fastened; AD = Adhered; HYB = Hybrid Securement
 +
 
 +
<li>When bitumen-coated mineral fibre insulation is adhered, torch-applied bituminous membranes may be applied directly to the top insulation panel; the use of an insulation overlay is optional.
 +
<li>Uncoated mineral fibre insulation panels
 +
<ol>
 +
<li>may be installed in multiple layers, but shall be located below other insulation (bitumen-coated mineral fibre, or as permitted by the ''manufacturer''), and
 +
<li>shall be secured only by mechanically fastening (Adhered, uncoated mineral fibre insulation is not permissible; see {{hilite | '''Figure 7.1.4.5.-E''' || 2025-October-25 }}).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===7.1.5. Uninsulated Systems===
 +
(The requirements in [[#7.1.3. All Systems | Subsection 7.1.3., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====7.1.5.1. Use of Crickets====
 +
 
 +
<ol>
 +
<li>Crickets
 +
<ol>
 +
<li><span class="principles">{{hilite | should be manufactured of ''heat-resistant insulation'', but|| 2021-June-30 }}</span> <span class="recommended">{{hilite | when crickets are manufactured from ''heat-sensitive insulation'' they should be covered with a layer of ''heat-resistant insulation'' at least 50.8 mm (2") thick|| 2021-June-30 }}</span>.
 +
<li><span class="recommended">{{hilite | may be installed directly over a ''roof deck'', although this is not recommended|| 2021-June-30 }}</span> ({{hilite |See [[#Section 8.1. Design | Section 8.1., "Design"]], for overlay requirements|| 2021-June-30 }}).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===7.1.6. Protected Roof Systems===
 +
(The requirements in [[#7.1.3. All Systems | Subsection 7.1.3., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====7.1.6.1. Insulation Selection====
 +
 
 +
<ol>
 +
<li>Only extruded polystyrene insulation (XPS) may be specified for a ''protected roof system''.
 +
</li></ol>
 +
 
 +
====7.1.6.2. Drainage Mats and Filter Fabric====
 +
 
 +
<ol>
 +
<li>{{hilite | At least one drainage layer is required in a ''protected membrane roof system'', either above or below the XPS insulation, but || 2025-October-25 }}
 +
<ol>
 +
<li>{{hilite | when openings in ''walls'' or roof penetrations provide less than 203.2 mm (8”) of clearance, the filtration layer must be water-permeable and the drainage layer shall be below the XPS insulation, to lower the ''drainage plane'' and minimize leaks into the building, and || 2025-October-25 }}
 +
<li>{{hilite | a drainage layer shall be specified above the XPS insulation when any ''overburden'' superimposed on the ''roof system'' will result in a “vapour-closed” condition (i.e., a ''vegetated roof system'' or an impermeable wearing course) || 2025-October-25 }}.
 +
</li></ol>
 +
<li>{{hilite | Subject to the conditions in Sentence (1), a drainage layer below the XPS insulation in a ''vegetated roof assembly'' may be omitted|| 2025-October-25 }} ([https://rpm.rcabc.org/index.php?title=VRA_Standard#6.1.3.1._General_Requirements_for_Water_Management {{hilite |Sentence 6.1.3.1.(5)|| 2025-October-25 }}]{{hilite |, “RGC Standard for Vegetated Roofs”|| 2025-October-25 }}).
 +
<li>Filter fabric must be specified to cover XPS insulation, to
 +
<ol>
 +
<li>contain the insulation and thereby prevent ‘insulation stacking’ (displacement) when insulation boards become buoyant in water, and
 +
<li>prevent fines from settling at the membrane level and filling the voids between insulation board joints.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
==Section 7.2. Materials==
 +
(See [[Division_C | Division C, "Accepted Materials"]])
 +
 
 +
===7.2.1. Material Properties===
 +
====7.2.1.1. General====
 +
 
 +
<ol>
 +
<li>Only insulation boards accepted for use in the '''''RoofStar Guarantee Program''''', and acceptable to the membrane manufacturer, may be used to qualify for a '''''RoofStar Guarantee'''''.
 +
<li>The requirement to use on RoofStar-accepted board insulation extends to insulation used in ''Tested Assemblies'' (See Article 3.2.1.1., "Substituting Materials Used in a Tested Assembly").
 +
<li>All insulation types shall have a minimum compressive strength of 110 KPa (20 psi) when installed without a cover board under mechanically attached membranes.
 +
</li></ol>
 +
 
 +
====7.2.1.2. Material Dimensions====
 +
 
 +
<ol>
 +
<li>The maximum width and length of insulation boards
 +
<ol>
 +
<li>installed with adhesive shall be 1219.2 mm (48") (See also [[#7.3.3.1. Adhesive-applied Insulation | Article 7.3.3.1.]]), and
 +
<li>installed with mechanical fasteners is limited only by the ''manufacturer''.
 +
</li></ol>
 +
<li>Insulation installed directly over a fluted steel deck must be thick enough to span the flutes under live loads, without risk of cracking or breakage.
 +
<li><span class="recommended">{{hilite | While minimal insulation panel thicknesses are permissible for some designs, some materials are by their nature breakable, and therefore the ''Design Authority'' should consider the constructability of the ''roof system'' from a material handling perspective and consider specifying a thicker panel|| 2021-June-30 }}</span>.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.2.1.3. Drainage Mats====
 +
 
 +
<ol>
 +
<li>Drainage mats {{hilite | used in ''protected membrane roof assemblies'', or used where ''overburden'' superimposed on the ''roof assembly'' requires an additional drainage layer, || 2025-October-25 }} shall conform to the requirements in [[#14.2.1.4. Drainage and Water Retention Materials | Article 14.2.1.4.]]
 +
<li>{{hilite | Drainage mats that form part of a ''vegetated roof assembly'' shall conform to the requirements in|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#6.2.1.2._Drainage_Layers {{hilite |Article 6.2.1.2.|| 2025-October-25 }}]{{hilite | of the “RGC Standard for Vegetated Roofs”|| 2025-October-25 }}.
 +
</li></ol>
 +
 
 +
====7.2.1.4. Filter Fabric====
 +
 
 +
<ol>
 +
<li>Filter fabrics {{hilite | for ''protected membrane roof assemblies'' || 2025-October-25 }} shall conform to the requirements in [[#14.2.1.6. Filter Fabric | Article 14.2.1.6.]]{{hilite | , but filtration layers that form part of a ''vegetated roof assembly'' shall conform to the requirements in [https://rpm.rcabc.org/index.php?title=VRA_Standard#6.2.1.3._Filtration_Layers Article 6.2.1.3.] of the “RGC Standard for Vegetated Roofs” || 2025-October-25}}.
 +
</li></ol>
 +
 
 +
===7.2.2. Suitability of Insulation===
 +
====7.2.2.1. Extruded Polystyrene Insulation====
 +
 
 +
<ol>
 +
<li>Extruded polystyrene insulation ("XPS") is ''heat-sensitive'' and
 +
<ol>
 +
<li>shall conform to CAN/CGSB-51.20-M87, "Thermal Insulation, Polystyrene, Boards and Pipe Covering", for Type 4 insulation, and to ASTM C578, "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation",
 +
<li>may be used in a ''conventionally insulated roof system'', and
 +
<li>is the only insulation that may be specified and installed in a ''protected roof system''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.2.2.2. Expanded Polystyrene Insulation====
 +
 
 +
<ol>
 +
<li>Expanded polystyrene ("EPS") is ''heat-sensitive'' and
 +
<ol>
 +
<li>shall conform to ASTM C578, "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation", and
 +
<li>shall be specified and installed only in a ''conventionally insulated roof system'', or as crickets in an ''uninsulated roof system'' (See also [[#7.1.4.3. Tapered Insulation and Crickets | Article 7.1.4.3.]]).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.2.2.3. Polyisocyanurate Insulation====
 +
(See [[Notes to PVC Standard#A-7.2.2.3. | Note A-7.2.2.3.]])
 +
 
 +
<ol>
 +
<li>Polyisocyanurate insulation ("Polyiso") is ''heat-resistant'' and
 +
<ol>
 +
<li>shall conform to CAN/ULC-S704, "Standard for Thermal Insulation, Polyurethane and Polyisocyanurate, Boards, Faced", and to ASTM C-1289, "Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board",
 +
<li>shall be manufactured with non-organic facers, and
 +
<li>shall be labeled to identify the manufacturer and  the date of manufacture.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.2.2.4. Mineral Fibre Insulation====
 +
 
 +
<ol>
 +
<li>Mineral fibre insulation ("Mineral wool") is ''heat-resistant'' and
 +
<ol>
 +
<li>shall conform to ASTM C726-17, "Standard Specification for Mineral Wool Roof Insulation Board", and
 +
<li>shall be specified and installed only in a ''conventionally insulated roof system''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
==Section 7.3. Application==
 +
===7.3.1. Guarantee Term Requirements===
 +
====7.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====7.3.1.2. RoofStar 15-Year Guarantees====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>incorporate crickets at all curbs and sleepers that impede drainage or are wider or longer than 1219.2 mm (48”), and
 +
<li>incorporate an insulation overlay for all insulated ''systems'' (regardless of the insulation type) that must
 +
<ol>
 +
<li>be at least 6.35 mm (1/4”) thick, and
 +
<li>possess a compressive strength of at least 690 kPa (100 psi) (Ref. [[#8.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee | Article 8.1.2.1.]]).
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===7.3.2. All Systems===
 +
====7.3.2.1. Procurement of Insulation====
 +
 
 +
<ol>
 +
<li>All insulation, except insulation that may be specified for re-use (See [[#7.1.3.2. General Requirements | Article 7.1.3.2.]]), must be supplied and installed by the ''Contractor''.</span></li></ol>
 +
 
 +
====7.3.2.2. Alignment, Sizing, and Support====
 +
 
 +
<ol>
 +
<li>{{hilite | Insulation boards|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | must be clean, and dry to the touch || 2025-October-25 }},
 +
<li>{{hilite | must be firmly supported|| 2021-June-30 }},
 +
<li><span class="principles">should be square and should make firm, full contact with adjacent panels,</span>
 +
<li>must be installed with the appropriate grade of expanding spray foam applied to gaps greater than 6.35 mm (1/4”) (this requirement does not apply to extruded polystyrene (XPS) installed in a ''protected roof system''), and
 +
<li>{{hilite | shall not be soldiered and || 2025-October-25 }} must be {{hilite | laterally || 2025-October-25 }} offset at least 304.8 mm (12") {{hilite | in two directions || 2025-October-25 }}, both for adjacent layers and for adjacent row; a minus offset tolerance of 50.8 mm (2") maximum is permissible (See {{hilite | '''Figure 7.3.2.2.-A''' || 2025-October-25}}).
 +
</li></ol>
 +
<li>Offsets are not required for
 +
<ol>
 +
<li>sloped insulation boards that are generally installed soldiered fashion to adjacent rows, and
 +
<li>the first layer of overlay board, installed on top of heat-sensitive insulation, which may be soldiered to facilitate joint taping.
 +
</li></ol>
 +
<br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.3.2.2.-A Offset and Staggered Layering in Field''' || 2025-October-25 }}<br>{{hilite | Forming Part of Clause 7.3.2.2.(1)(4) || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:7.3 Insulation Offset and Staggered.jpg|link=http://rpm.rcabc.org/images/2/28/7.3_Insulation_Offset_and_Staggered.jpg | 500 px]]
 +
|}
 +
<br>
 +
<li>{{hilite | On exterior insulated walls, insulation joints at the roof-wall interface must be offset and staggered to eliminate thermal bridging|| 2022-February-5 }} ({{hilite | See {{hilite | '''Figure 7.3.2.2.-B''' || 2025-October-25 }}|| 2022-February-5 }}).
 +
<br>
 +
<br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 7.3.2.2.-B Offset and Staggered Layering at Wall''' || 2025-October-25 }}<br>{{hilite | Forming Part of Clause 7.3.2.2.(3) || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:Figure 7.3.2.-B (Generic conv.).jpg|link=https://rpm.rcabc.org/images/e/ed/Figure_7.3.2.-B_%28Generic_conv.%29.jpg | 500 px]]
 +
|}
 +
</li></ol>
 +
 
 +
====7.3.2.3. Insulation Securement====
 +
 
 +
<ol>
 +
<li>Insulation securement shall conform to the specified design for the ''roof assembly'', calculated to resist the ''Specified Wind Loads'' for the ''roof system''.
 +
<li>Mineral fibre insulation shall be installed and secured to comply with the requirements and restrictions in [[#7.1.4.5. Use of Mineral Fibre Insulation | Article 7.1.4.5., "Use of Mineral Fibre Insulation"]].
 +
</li></ol>
 +
 
 +
====7.3.2.4. Protection of Heat-sensitive Insulation====
 +
 
 +
<ol>
 +
<li>{{hilite | Heat-sensitive insulation must be protected from high temperatures, both during construction and when placed in service, and therefore it must be overlaid with heat-resistant insulation no less than 50.8 mm (2") thick || 2023-June-16 }} (see [[#7.1.4.2. Protection of Heat-sensitive Insulation | Article 7.1.4.2.]]).
 +
</li></ol>
 +
 
 +
===7.3.3. Conventionally Insulated Systems===
 +
(The requirements in [[#7.3.2. All Systems | Subsection 7.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====7.3.3.1. Adhesive-applied Insulation====
 +
 
 +
<ol>
 +
<li>Unless specified otherwise by a ''Tested Assembly'' or in an engineered specification (see [[#3.3.2.2. Securing Systems with Adhesives | Article 3.3.2.2, "Securing Systems with Adhesives"]]), when insulation components are installed with adhesive,
 +
<ol>
 +
<li>the maximum width and length of an insulation panel shall be 1219.2 mm (48"), and
 +
<li>the maximum length of any insulation overlay panel shall be 2438.4 mm (96").
 +
</li></ol>
 +
<li>When extruded polystyrene insulation is adhered with a two-component low-rise polyurethane foam adhesive, the faces of the insulation board must be roughened by planing to achieve optimal adhesion.
 +
<li>Two-component low-rise polyurethane foam adhesive ribbons must be applied
 +
<ol>
 +
<li>to a clean, dry, and contaminant-free surface,
 +
<li>in {{hilite | parallel runs or in|| 2021-June-30 }} a Z-pattern,
 +
<li>no more than 152.4 mm (6”) from any edge of the board and spaced no more than 304.8 mm (12”) apart, and
 +
<li>in ribbon widths specified by the adhesive manufacturer or, in the absence of manufacturer requirements, 19.05 mm (3/4”) wide.
 +
</li></ol>
 +
<li>''Roof system'' components adhered with two-component low-rise polyurethane foam must be
 +
<ol>
 +
<li>installed immediately in wet adhesive (before a surface skin develops), and
 +
<li>properly placed and weighted in wet adhesive until cured.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====7.3.3.2. Insulation Adhered with Hot Bitumen====
 +
<ol>
 +
<li>{{hilite | Hot bitumen used to adhere a ''roof system''|| 2021-June-30 }}
 +
<ol>
 +
<li>must be applied at minimum rates and temperatures based on the type of product, as published by the material manufacturer and in the Standard for Built-up Roof (BUR) Systems, and
 +
<li><span class="principles">{{hilite | may be applied on slopes up to 1/2:12</span> (For steeper slopes, select a different method of securement)|| 2021-June-30 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===7.3.4. Reserved===
 +
===7.3.5. Protected Roof Systems===
 +
(The requirements in [[#7.3.2. All Systems | Subsection 7.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====7.3.5.1. Sequencing of Work====
 +
 
 +
<ol>
 +
<li>{{hilite | Insulation installed against walls or curbs must be separated from roof membranes with a non-bonding drainage mat or slip sheet. || 2023-June-16 }}
 +
<li>{{hilite | Insulation must be secured and protected immediately after installation. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
====7.3.5.2. Drainage Mats====
 +
(See also [[#Part 11 - Drainage | Part 11, "Drainage"]])
 +
 
 +
<ol>
 +
<li>{{hilite | At least one drainage layer is required in a ''protected membrane roof system'' and its location within the system shall conform to the design requirements in || 2025-October-25 }} [[#7.1.6.2. Drainage Mats and Filter Fabric| {{hilite | Sentence 7.1.6.2.(1) || 2025-October-25 }}]].
 +
<li>A drainage mat must be installed below the XPS insulation.
 +
<li>A second drainage layer may be installed above the insulation but is at the discretion of the ''Design Authority''.
 +
<li>If a second drainage layer is specified, a vertical separation space measuring at least 12.7 mm (1/2″) must be preserved between the drainage layer and any ballast or overburden, to permit airflow and to assist in leveling.
 +
<li>Specialized proprietary drainage products must be acceptable to the membrane manufacturer.
 +
<li>Ballast guards must be installed around all roof drains.
 +
</li></ol>
 +
 
 +
====7.3.5.3. Filter Fabric====
 +
 
 +
<ol>
 +
<li>Fabric filter mats must be
 +
<ol>
 +
<li>installed loose-laid (un-bonded) over the insulation and below any type of ballast or roof covering,
 +
<li>overlapped at all edges a minimum of 304.8 mm (12”),
 +
<li>at least 2438.4 mm x 2438.4 mm (96" x 96") in size, and
 +
<li>slit to fit over roof penetrations or cut out around roof drains and other openings.
 +
</li></ol>
 +
<li>Filter fabric must extend up perimeter edges and ''curbs'' and must be placed loose (unattached) under metal counter flashings or wall finishes.
 +
<li>{{hilite | When the filtration layer is part of a ''vegetated roof assembly'', the filtration layer shall conform to|| 2025-October-5 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#10.3.2.7._Installation_of_Void_Fill_and_Filtration_Layers {{hilite |Article 10.3.2.7.|| 2025-October-5 }}]{{hilite | of the “RGC Standard for Vegetated Roofs”|| 2025-October-5 }}.
 +
</li></ol>
 +
 
 +
<hr>
 +
<div id=PART_8></div>
 +
 
 +
=Part 8 - Insulation Overlays=
 +
==Section 8.1. Design==
 +
(See [[Notes to PVC Standard#A-8.1 | Note A-8.1]])
 +
 
 +
===8.1.1. General===
 +
====8.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====8.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].
 +
</li></ol>
 +
 
 +
===8.1.2. Guarantee Term Requirements===
 +
====8.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====8.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>incorporate an insulation overlay on all "conventionally insulated systems'', regardless of the insulation type, that must
 +
<ol>
 +
<li>be at least 6.35 mm (1/4”) thick, and
 +
<li>possess a compressive strength of at least 690 kPa (100 psi).
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 8.1.2.3. RoofStar Vegetated Roof Guarantee || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the supporting ''roof assembly'' shall
 +
<ol>
 +
<li>comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''',
 +
<li>be acceptable to the manufacturer as support for a ''vegetated roof system'', and
 +
<li>comply with the related requirements in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”].
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===8.1.3. Reserved===
 +
===8.1.4. Conventionally Insulated Systems===
 +
====8.1.4.1. {{hilite | Required Use of Insulation Overlays || 2024-October-20 }}====
 +
 
 +
<ol>
 +
<li>Except as provided in {{hilite | Sentence (4) || 2025-October-25 }}, all ''conventionally insulated roof systems'' must incorporate one layer of an accepted insulation overlay to cover all flat or tapered insulation panels, installed on any plane, whenever any one of the following conditions apply:
 +
<ol>
 +
<li>The compressive strength of the specified insulation is less than 110 KPa (20 psi),
 +
<li>Specified membranes are adhered or heat-welded (see [[#9.2.1.1. Membrane Composition, Thickness, and Selection | {{hilite | '''Table 9.2.1.1.''' || 2025-October-25 }}]]), or
 +
<li>''Overburden'' will be superimposed on the roof system.
 +
</li></ol>
 +
<li>When a ''conventionally insulated roof system'' supports ''overburden'', the overlay panels must be
 +
<ol>
 +
<li>adhered to the insulation (mechanical fastening is not permissible),
 +
<li>selected from the [http://rpm.rcabc.org/index.php?title=Roofs_-_Insulation_Overlays tables in Division C] for
 +
<ol>
 +
<li>asphaltic panels (with or without factory-laminated base sheet membranes),
 +
<li>moisture resistant gypsum-based panels,
 +
<li>panels made of high-density insulation, or
 +
<li>high-density insulation panels with factory-laminated membranes, and
 +
</li></ol>
 +
<li>capable of supporting any superimposed loads on the exposed membrane, without compression or distortion of the ''roof system'' or any one of its components (See also [[#14.1.3.2. Loads | Article 14.1.3.2., "Loads"]]).
 +
</li></ol>
 +
<li>{{hilite | Notwithstanding the requirements in Sentence (2), when the ''roof assembly'' supports a ''vegetated roof system'' the overlay must be at least 12.7 mm (1/2”) thick and capably resist compression loads equal to or greater than 552 kPa (80 psi) (“RGC Standard for Vegetated Roofs”,|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.3.1._Permitted_Supporting_Roof_Assemblies {{hilite |Clause 1.1.3.1.(2)(2)|| 2025-October-25 }}]).
 +
<li>Except where an insulation overlay is required in Sentence (2), an insulation overlay is optional (not required) when the membrane is self-adhered and the following conditions have been satisfied:
 +
<ol>
 +
<li>The specified membrane is expressly accepted by the '''''Guarantor''''' for application directly on a specific insulation board without the use of an overlay, and
 +
<li>The specified membrane is expressly approved (in published literature) by the ''manufacturer'' for application directly to a specific insulation panel.
 +
</li></ol>
 +
<li>Crickets made of ''heat-sensitive insulation'', specified for and installed in a membrane system applied with hot bitumen, shall be covered with no less than
 +
<ol>
 +
<li>one layer of an accepted overlay panel, provided the panel thickness is at least 12.7 mm (1/2") and the joints between panels are sealed with the ''manufacturer’s'' approved self-adhered membrane or tape, or
 +
<li>two layers of an accepted overlay panel, when the thickness of the panel is at least 4.76 mm (3/16").
 +
</li></ol>
 +
</li></ol>
 +
{{strike| <ol>
 +
<li>An insulation overlay of one or more layers is required over {{hilite | all field-installed flat and sloped ||2021-June-30 }} board-type insulation when
 +
<ol>
 +
<li>{{hilite | the compressive strength of the insulation is less than 110 KPa (20 psi)|| 2021-February-7 }},
 +
<li>{{hilite | the membrane {{hilite | is self-adhered or|| 2021-June-30 }} will be applied with a torch flame, adhesives, or hot bitumen|| 2021-February-7 }}, or
 +
<li>a ''conventionally insulated system'' supports an ''overburden''.
 +
</li></ol>
 +
<li>''Conventionally insulated roof systems'' that support ''overburden'' must be designed with at least one layer of an adhered {{hilite | overlay board (asphaltic overlays, moisture resistant fibreglass-faced silicon treated gypsum core overlays, high-density insulation overlays, composite or membrane-laminated overlays) capable of supporting any superimposed loads on the exposed membrane, without compression or distortion of the roof system or any one of its components (See also [[#14.1.3.2. Loads | Article 14.1.3.2., "Loads"]]|| 2022-June-17}}).
 +
<li>{{hilite | An insulation overlay of one or more layers is required over insulation installed on vertical surfaces|| 2021-June-30 }}.
 +
<li>{{hilite | The requirement to use an insulation overlay in the field does not apply || 2021-June-18 }} {{hilite |when the roof membrane is self-adhered,|| 2021-June-30 }} and
 +
<ol>
 +
<li>{{hilite | it is expressly accepted by the '''''Guarantor''''' for application directly on a specific insulation board without the use of an overlay|| 2021-June-30 }}, or
 +
<li>{{hilite | it is expressly approved (in published literature) by the ''manufacturer'' for application directly on an insulation panel|| 2021-June-30 }}.
 +
</li></ol>
 +
<li>{{hilite | ''Heat-sensitive'' crickets used in membrane systems applied with a torch flame or hot bitumen must be overlaid using either|| 2021-June-18 }}
 +
<ol>
 +
<li>one layer of a RoofStar-accepted insulation overlay measuring at least 12.7 mm (1/2”) thick and continuously sealed with a flame-impervious tape along all joints with adjacent panels, or
 +
<li>two layers of a RoofStar-accepted insulation overlay, each measuring at least 4.76 mm (3/16”) thick.
 +
</li></ol>
 +
</li></ol> || 2023-October-20 }}
 +
 
 +
====8.1.4.2. Use Over Mineral Fibre Insulation====
 +
(See also [[#7.1.4.5. Use of Mineral Fibre Insulation | Article 7.1.4.5.]])
 +
 
 +
<ol>
 +
<li>Mineral fibre insulation must be overlaid with a moisture-resistant fibreglass-faced silicon treated gypsum core board measuring at least  12.7 mm (1/2") thick
 +
<ol>
 +
<li>when the insulation is mechanically fastened, or
 +
<li>when it will support ''overburden''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
==Section 8.2. Materials==
 +
(See [[Division_C | Division C, "Accepted Materials"]])
 +
 
 +
===8.2.1. Material Properties===
 +
====8.2.1.1. Insulation Overlay Dimensions====
 +
 
 +
<ol>
 +
<li>Regardless of the type of insulation overlay, the overall thickness of insulation overlay boards shall not exceed 50.8 mm (2”) (See minimum allowable thicknesses are shown in {{hilite | '''Table 8.2.1.1.''' || 2025-October-25 }}).
 +
<li>{{hilite | Asphalt-coated|| 2021-June-30 }} fibreboard roof insulation adhered with hot asphalt or an asphalt-based adhesive must be asphalt-coated on the top and bottom surface (Minimum coated two-sides).
 +
<li>Fire guard tape must be 152.4 mm (6”) wide
 +
<ol>
 +
<li>self-adhering modified bituminous tape acceptable to the membrane manufacturer, or
 +
<li>Type IV fibreglass felt or No. 15 organic felt, applied with hot bitumen or cold adhesive.
 +
</li></ol>
 +
</li></ol>
 +
<br>
 +
::::::{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Table 8.2.1.1..<br>Insulation Overlay Dimensions''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 8.2.1.1. || 2025-October-25 }}
 +
|-
 +
|}
 +
{|  class="wikitable" style="margin-left: 20pt; margin-right: auto;border-color:#E7E9E9;vertical-align:top;text-align:center;" 
 +
|-
 +
! style="width: 450px;vertical-align:centre;text-align:center;" | Overlay Type
 +
! style="width: 220px;vertical-align:centre;text-align:center;" | Minimum Thickness - mm (in.)
 +
|-
 +
| Moisture resistant fibreglass-faced silicon treated gypsum core ||  style="width: 100px;vertical-align:top;text-align:center;"  | 6.35 (1/4")
 +
|-
 +
| High-density insulation || style="width: 100px;vertical-align:top;text-align:center;"  |  12.7 (1/2")
 +
|-
 +
| Fibreboard || style="width: 100px;vertical-align:top;text-align:center;"  | As listed in this ''Manual''
 +
|-
 +
| Mineral wool || style="width: 100px;vertical-align:top;text-align:center;"  | As listed in this ''Manual''
 +
|}
 +
 
 +
==Section 8.3. Application==
 +
===8.3.1. Guarantee Term Requirements===
 +
====8.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====8.3.1.2. RoofStar 15-Year Guarantees====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' {{hilite | (except as noted in Sentence (2)) || 2025-October-25 }} shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>incorporate an insulation overlay on all insulated ''systems'' (regardless of the insulation type) that must
 +
<ol>
 +
<li>be at least 6.36 mm (1/4”) thick, and
 +
<li>possess a compressive strength of at least 690 kPa (100 psi).
 +
</li></ol>
 +
</li></ol>
 +
<li>{{hilite | When a ''vegetated roof system'' is constructed on a ''conventionally insulated roof assembly'', the insulation overlay shall conform to the requirements in || 2025-October-25 }} [[#8.1.4.1. Required Use of Insulation Overlays |  {{hilite | Sentence 8.1.4.1.(3)]]|| 2025-October-25 }}.
 +
</li></ol>
 +
 
 +
===8.3.2. Reserved===
 +
===8.3.3. Conventionally Insulated Systems===
 +
====8.3.2.1. Alignment of Overlays====
 +
 
 +
<ol>
 +
<li>The ''Contractor'' shall ensure that the selection and application of insulation overlays conforms to the Design requirements in [[#Section 8.1. Design | Section 8.1.]] of this Part.
 +
<li>{{hilite | Fibreboard shall not be used as an insulation overlay beneath torch-applied membranes|| 2021-June-30 }}.
 +
<li>{{hilite | Insulation overlays || 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | should be square and should make firm, full contact with adjacent panels unless specified otherwise by the manufacturer|| 2021-June-30 }}, and
 +
<li>{{hilite | must be offset at least 304.8 mm (12") from the joints of the insulation layer; a minus offset tolerance of 50.8 mm (2") maximum is permissible|| 2021-June-30 }}.
 +
</ol></li>
 +
<li>All insulation overlay boards must be offset from insulation joints by at least 304.8 mm (12”) and shall be offset from adjacent and underlying overlay boards by at least 304.8 mm (12”) ({{hilite | '''Figure 8.3.2.1.-A''' || 2025-October-25 }}).
 +
<li>{{hilite | While insulation overlays with a laminated base sheet membrane shall be offset and staggered from the insulation joints, they may be installed soldier-fashioned with each other, {{hilite | but only || 2025-October-25 }} when this is permissible in the application literature published by the ''manufacturer''.|| 2024-June-15 }}
 +
</ol></li>
 +
<br>
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 8.3.2.1.-A Offset and Staggered Insulation and Overlays''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 8.3.2.1. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:8.1 Insulation and Overlays.jpg|link=http://rpm.rcabc.org/images/9/9e/8.1_Insulation_and_Overlays.jpg | 500 px]]
 +
|}
 +
 
 +
====8.3.2.2. Mechanical Securement====
 +
 
 +
<ol>
 +
<li>When mechanically attaching insulation overlay boards, the insulation and overlay boards may be fastened together as one ''assembly''.
 +
<li>Unless otherwise indicated by the system requirements in a ''Tested Assembly'', follow the fastener patterns set out in [[#3.3.2.1. Securing Systems with Mechanical Fasteners | Article 3.3.2.1.]]
 +
</ol></li>
 +
 
 +
====8.3.2.3. Adhered Securement====
 +
 
 +
<ol>
 +
<li>{{hilite | Adhered overlays must conform to the design requirements in [[#Section 8.1. Design | Section 8.1.]] of this Part|| 2022-June-17 }}.
 +
<li>{{hilite | ''Roof system'' components adhered with two-component low-rise polyurethane foam must be|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | installed immediately in wet adhesive (before a surface skin develops), applied|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | to a clean, dry and contaminant-free surface|| 2021-June-30 }},
 +
<li>{{hilite | in parallel runs or in a Z-pattern, no more than 152.4 mm (6”) from any edge of the board and spaced no more than 304.8 mm (12”) apart|| 2021-June-30 }}, and
 +
<li>{{hilite | in ribbon widths specified by the adhesive manufacturer or, in the absence of manufacturer requirements, 19.05 mm (3/4”) wide|| 2021-June-30 }}, and
 +
</ol></li>
 +
<li>{{hilite | properly placed and weighted in wet adhesive until cured|| 2021-June-30 }}.
 +
</ol></li>
 +
<li>{{hilite | Hot bitumen used to adhere a ''roof assembly''|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | must be applied at minimum rates and temperatures published by the ''manufacturer'' for the type of bitumen used|| 2021-June-30 }}, and
 +
<li>{{hilite | may be applied on slopes up to 1/2:12 (for steeper slopes, select a different method of securement)|| 2021-June-30 }}.
 +
</ol></li>
 +
</ol></li>
 +
</ol></li>
 +
 
 +
<hr>
 +
<div id=PART_9></div>
 +
 
 +
=Part 9 - Roof Field (Membrane Systems)=
 +
==Section 9.1. Design==
 +
===9.1.1. General===
 +
====9.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====9.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>''Manufacturer'' means the manufacturer of the primary roof covering, unless stated otherwise.
 +
<li>''Parallel to Slope'' means the direction parallel to the angle of a sloped plane.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===9.1.2. Guarantee Term Requirements===
 +
====9.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====9.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>{{hilite | be constructed with membranes conforming to the RoofStar 15-Year Guarantee criteria in Table 9.1. || 2020-October-22 }}
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 9.1.2.3. RoofStar Vegetated Roof Guarantee || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the supporting ''roof assembly'' shall
 +
<ol>
 +
<li>comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''',
 +
<li>be acceptable to the manufacturer as support for a ''vegetated roof system'' (with consideration to added hydrostatic pressure – see [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.4.1._Supporting_Roof_Assemblies Article 1.1.4.1.]] in the “RGC Standard for Vegetated Roofs”), and
 +
<li>comply with the related requirements in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”].
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===9.1.3. All Systems===
 +
====9.1.3.1. General Requirements====
 +
 
 +
<ol>
 +
<li>All PVC membrane roofs shall be designed to satisfy the requirements of the Code and the requirements in [[#Part 3 - Securing the Roof Assembly | Part 3]] of this Standard.
 +
<li>The specifications, details, and installation techniques must conform to the membrane manufacturer's requirements.
 +
<li>Membranes must be selected for their
 +
<ol>
 +
<li>composition, both in terms of thickness and reinforcement,
 +
<li>performance characteristics in relation to the intended use of the roof, as for example puncture resistance or reflectivity and reduced heat absorption,
 +
<li>application methodology, which may be limited by the type of ''supporting deck'' or substrate to which it will be applied, and
 +
<li>seasonal applications (summer and winter grades).
 +
</li></ol>
 +
<li>{{hilite | Membranes may not be adhered to lightweight insulation concrete unless expressly permitted by the ''manufacturer''|| 2025-October-25 }}.
 +
</li></ol>
 +
 
 +
====9.1.3.2. Control Joints (Roof Dividers)====
 +
 
 +
<ol>
 +
<li>{{hilite | When ''control joints'' (roof dividers) are recommended or required by the ''manufacturer'', or are deemed necessary by the ''Design Authority'' || 2023-June-16 }}, {{hilite | they must be designed following the requirements in || 2023-June-16 }} [[#10.1.6.2. Control Joints (Roof Dividers) | Article 10.1.6.2.]]
 +
</li></ol>
 +
 
 +
====9.1.3.3. Securement====
 +
(See [[Notes to PVC Standard#A-9.1.3.3. | Note A-9.1.3.3.]])
 +
 
 +
<ol>
 +
<li>The ''roof system'' must be secured to resist displacement by ''Specified Wind Loads'', and therefore the requirements in this Article shall be read together with the requirements in [[#Part 3 - Securing the Roof Assembly | Part 3]] of this Standard.
 +
<li>{{hilite | All ''roof systems'', regardless of how the field system is secured, must be mechanically secured at perimeters using the ''manufacturer's'' proprietary securement system (Ref. || 2024-January-31 }} [[#9.3.2.3. General Requirements for Membrane Application | Article 9.3.2.3.(6)]] and [[#10.1.3.1. General Requirements | Article 10.1.3.1.]]).
 +
</li></ol>
 +
 
 +
====9.1.3.4. Membrane Protection====
 +
 
 +
<ol>
 +
<li>Installed membranes must be protected from damage caused by
 +
<ol>
 +
<li>any walkway surface,
 +
<li>work performed concurrently or subsequently by other trades (the ''Design Authority'' is strongly urged to direct the work of other trades through specific, explicit directives in the design specifications), and
 +
<li>chemicals or other contaminants that may adversely impact the roof membrane or other ''system'' components, including (without limitation)
 +
<ol>
 +
<li>animal or vegetable grease,
 +
<li>hot pipes (release valves),
 +
<li>petroleum products or bi-products, and
 +
<li>{{hilite | miscellaneous fluids from equipment|| 2020-July-3 }} (See also [[#12.3.2.6. Liquid Membrane Flashing | Article 12.3.2.6.]] for application of reinforced liquid membrane flashing around roof penetrations).
 +
</li></ol>
 +
</li></ol>
 +
<li>An intermediate separation layer must be installed between
 +
<ol>
 +
<li>PVC membranes and foam plastic insulation materials (because of chemical incompatibility), and
 +
<li>all fully adhered membranes and rough deck surfaces in a ''protected membrane roof system''.
 +
</li></ol>
 +
<li><span class="recommended">Membranes should be protected from</span>
 +
<ol>
 +
<li><span class="recommended">pool or garden chemicals and fertilizers</span>,
 +
<li><span class="recommended">pet urine</span>,
 +
<li><span class="recommended">bird excrement</span>, and
 +
<li><span class="recommended">refrigerants</span>.
 +
</li></ol>
 +
<li><span class="recommended">Where it is desirable for the field membrane to resist the damaging effects of grease, oils or other contaminants, the ''Design Authority'' should consider specifying alternative measures, including a liquid membrane that is acceptable to the '''''Guarantor''''' and the ''manufacturer''.</span>
 +
<li><span class="recommended">{{hilite | Roof membranes that are exposed to sunlight reflected off adjacent glazing and metal cladding or framework (such as window mullions) should be selected for their ability to accommodate elevated temperatures, or should be protected || 2022-October-22 }}</span>
 +
<ol>
 +
<li><span class="recommended">{{hilite | with overburden materials, such as pavers or gravel, || 2022-October-22 }}</span> or
 +
<li><span class="recommended">{{hilite | by overhangs that shade reflective wall surfaces and glazing || 2022-October-22 }}</span> (See [[Notes to PVC Standard#A-9.1.3.4.| Note A-9.1.3.4.]]).
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====9.1.3.5. Walkways====
 +
 
 +
<ol>
 +
<li>When ''conventionally insulated'' and uninsulated ''systems'' will be accessed at least once per month for maintenance of serviceable equipment, the design must incorporate designated walkways
 +
<ol>
 +
<li>to protect the primary membrane at roof access points, equipment service locations and along travel routes,
 +
<li>that facilitate drainage and drying (<span class="principles">pedestals and other paver supports provide airflow for drying surfaces and assist in leveling; they should not impede the flow of water or air and should uniformly distribute the dead load of pavers and predicted live loads</span>), and
 +
<li>that are properly secured against movement by wind.
 +
</li></ol>
 +
<li>{{hilite | The membrane must be suitably protected from mechanical damage by walkway surfaces. || 2023-June-16 }}
 +
<li>Paver walkway surfaces must be suitably supported in keeping with [[#14.1.3.11. Wearing Surfaces | Article 14.1.3.11.]] and [[#14.3.2.5. Wearing Surfaces | Article 14.3.2.5., "Wearing Surfaces"]].
 +
<li>Designated walkways may be specified using a proprietary coating (See also [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]]), or may be superimposed on the membrane surface but must be suitably supported in keeping with [[#14.1.3.11. Wearing Surfaces | Article 14.1.3.11.]] and [[#14.3.2.5. Wearing Surfaces | 14.3.2.5., "Wearing Surfaces"]].
 +
</li></ol>
 +
 
 +
===9.1.4. Conventionally Insulated Systems===
 +
(The requirements in [[#9.1.3. All Systems | Subsection 9.1.3., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.1.4.1. General Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | All ''conventionally insulated'' ''roof systems'' must conform to the requirements in [[#3.1.4.1. Securement Against Specified Wind Loads | Article 3.1.4.1.]], and to [[#Part 3 - Securing the Roof Assembly | Part 3]] generally.|| 2020-July-3 }}
 +
<li>Only ''PARS'' and ''AARS'' assemblies are permitted when a ''conventionally insulated roof system'', or a portion of it, is designed to support any type of load; pavers supported by pedestals are an exception (this limitation must be read together with the requirements in [[#Part 14 - The Roof as a Platform | Part 14]]).
 +
</li></ol>
 +
 
 +
====9.1.4.2. Warning Zones====
 +
 
 +
<ol>
 +
<li><span class="recommended">Fall protection warning zones</span> (see <u>WorkSafeBC Regulations</u> and related materials) <span class="recommended">may be designed to utilize</span>
 +
<ol>
 +
<li><span class="recommended">adhered markings or tape</span> (Ref. [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]]), or
 +
<li><span class="recommended">{{hilite | a proprietary coating || 2020-July-3 }}</span>.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===9.1.5. Uninsulated Systems===
 +
(The requirements in [[#9.1.3. All Systems | Subsection 9.1.3., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.1.5.1. General Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | All ''uninsulated'' ''roof systems'' must satisfy the requirements of the Building Code and [[#Part 3 - Securing the Roof Assembly | Part 3]] of this Standard, and shall be (when applicable)|| 2020-July-3 }}
 +
<ol>
 +
<li>{{hilite | a ''Tested Assembly'',|| 2020-July-3}}
 +
<li>{{hilite | an ''Assembly with Proven Past Performance'', or|| 2020-July-3}}
 +
<li>{{hilite | an ''assembly'' with custom-engineered securement.|| 2020-July-3}}
 +
</li></ol>
 +
<li>When a ''roof system'' installed on a concrete ''deck'' or concrete topping is uninsulated, the system design must mitigate the effects of vapour drive from the concrete.
 +
<li>{{hilite | Membranes may not be fully adhered to a wood ''deck''. || 2023-June-16 }}
 +
<li>{{hilite | Membranes specified for application over a wood ''deck'' shall be || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | fully adhered to a mechanically attached, RoofStar-accepted deck overlay board, || 2023-June-16 }} or
 +
<li>{{hilite | mechanically fastened. || 2023-June-16 }}
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====9.1.5.2. Warning Zones====
 +
 
 +
<ol>
 +
<li>The requirements and recommendations in [[#9.1.4.2. Warning Zones | Article 9.1.4.2.]] shall be applied and considered for ''uninsulated roof systems''.
 +
</li></ol>
 +
 
 +
===9.1.6. Protected Roof Systems===
 +
(The requirements in [[#9.1.3. All Systems | Subsection 9.1.3., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.1.6.1. General Requirements====
 +
 
 +
<ol>
 +
<li>Only fully adhered membranes may be used in a ''Protected Membrane Roof System''; mechanically attached membranes are not suitable and shall not be used for this application.
 +
<li>Ballasted systems shall conform to the requirements in [[#3.3.5.1. Ballasted Systems | Article 3.3.5.1.]] and [[#9.1.3.3. Securement | Article 9.1.3.3.]]
 +
</li></ol>
 +
 
 +
==Section 9.2. Materials==
 +
(See [[Division_C | Division C, "Accepted Materials"]])
 +
 
 +
===9.2.1. Material Properties===
 +
====9.2.1.1. Membrane Composition, Thickness, and Selection====
 +
 
 +
<ol>
 +
<li>{{hilite | All PVC membranes must be selected from the list of accepted materials published in [[Division_C | Division C]] of this ''Manual'', and must conform to|| 2022-June-17 }}
 +
<ol>
 +
<li>acceptance criteria published in this ''Manual'', and
 +
<li>{{hilite | criteria in {{hilite | '''Table 9.2.1.1.''' || 2025-October-25 }}||2022-June-17}}
 +
</li></ol>
 +
<li>Liquid membranes must be reinforced and accepted for use both by the single ply manufacturer and by the manufacturer of the liquid membrane.
 +
</li></ol>
 +
<br>
 +
:{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:1150px;" | {{hilite | '''Table 9.2.1.1..<br>Properties of Polyvinyl Chloride (PVC) Membranes''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 9.2.1.1.<br><small>All thicknesses shown are in mm</small>.<br><small>" || 2025-October-25 }}<span style="color:#d33">X</span>"{{hilite |  means not permissible or not available.</small> || 2025-October-25 }}
 
|-
 
|-
| [[File:PARS Illustration - Option 1 (SMALL).jpg|class=img-responsive | link=https://rpm.rcabc.org/images/b/bd/PARS_Illustration_-_Option_1_%28SMALL%29.jpg | 400 px |Figure 7.2a]]
 
 
|}
 
|}
</div>
+
 
<div class="col-md-3">
+
{|            class="wikitable mw-datatable" style="margin-left: 10pt; margin-right: auto;border-color:#E7E9E9;vertical-align:top;text-align:top;"                                                                                                                                                                                                                                                                                                                                                   
{| class="wikitable"; table style="background-color:white"; border="#A9A9A9;"
+
|+                                                                                                                                                                                                                                                                                                                             
|+ <small>Figure 3.1.4.1.-B</small>
+
!              colspan="2" style="border:none; background-color:#E7E9E9"      |
 +
!              colspan="5" rowspan="1" style="vertical-align:center;text-align:center;background-color:#A9A9A9"    |              <span style="color:#f8f9fa">Exposed Roof Systems</span>  !! rowspan="20" style="border: none; background-color:#E7E9E9"            |
 +
!              colspan="2" rowspan="1" style="vertical-align:top;text-align:center;background-color:#A9A9A9"    |            <span style="color:#f8f9fa">Protected Roof Systems</span>
 +
!              rowspan="2" style="vertical-align:center;text-align:center;width:100px;background-color:#808080;"    |            <span style="color:#f8f9fa">Grade-level<br>Water-<br>proofing</span>
 +
|-
 +
!              colspan="2" style="border:none; background-color:#E7E9E9;"      | 
 +
!              colspan="4" style="vertical-align:center;text-align:center;background-color:#C0C0C0;"    |            Conventionally Insulated / Uninsulated Systems
 +
!              colspan="1" style="vertical-align:center;text-align:center;background-color:#C0C0C0;"    |            <span style="color:#4682B4">Membrane<br>Gutters</span>
 +
!              rowspan="1" style="vertical-align:center;text-align:center;background-color:#C0C0C0;"    |            <span style="color:#008B8B">Ballasted</span>                                                                                                                                                                                                                                                                                                    
 +
!              rowspan="1" style="vertical-align:centertext-align:center;background-color:#C0C0C0;"      |            <span style="color:#9370DB">PMR<br>Systems</span>
 +
|-
 +
|            colspan="2" style="border:none; background-color:#E7E9E9"      |                                                                                                                                                                                                                                                                                 
 +
|              rowspan="2" style="vertical-align:center;text-align:center;background-color:#D3D3D3"    |            Mechanically<br>Fastened;<br>Induction<br>Welded* 
 +
|              colspan="3" rowspan="1" style="vertical-align:center;text-align:center;background-color:#DCDCDC;"    |            Adhered
 +
|              rowspan="2" style="vertical-align:center;text-align:center;background-color:#D3D3D3"    |            Adhesive-<br>applied;<br>Self-<br>adhered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
 +
|             rowspan="2" style="vertical-align:center;text-align:center;background-color:#D3D3D3"    |            Loose-laid
 +
|              rowspan="2" style="vertical-align:center;text-align:center;background-color:#D3D3D3"     |            Adhered
 +
|              rowspan="2" style="vertical-align:center;text-align:center;background-color:#D3D3D3"    |            Adhered
 +
|-
 +
|            colspan="2" style="border:none; background-color:#E7E9E9"      |
 +
|              rowspan="1" style="vertical-align:center;text-align:center;background-color:#D3D3D3"    |            Self-<br>adhered
 +
|              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;background-color:#D3D3D3"  |  Hot-<br>mopped
 +
|              rowspan="1" style="vertical-align:center;text-align:center;background-color:#D3D3D3"    |            Adhesive-<br>applied
 +
|-     
 +
! style="vertical-align:left;text-align:left;"      |            Type, Reinforcement, Grade    ||  Guarantee Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>                                                                                                                                                                                                                                                                                                             
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>                                                                                                                                                                                                                                                                                                                         
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>                                                                                                                                                                                                                                                                                                               
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>                                                                                                                                                                                                                                                                                                               
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>                                                                                                                                                                                                                                                                                                                           
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small> 
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>
 +
!              colspan="1" rowspan="1" style="vertical-align:center;text-align:center;"      |              <small>mm (mils)</small>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
 +
|-
 +
|              rowspan="4" style="text-align:left;background-color:#4682B4"        |              <span style="color:#fff">PVC</span>     
 +
|-
 +
|              rowspan="1" style="text-align:center;background-color:#FFA07A"            |    5            ||      rowspan="1" style="text-align:center;width=200px;"            |          1.270 (50)          ||    rowspan="1" style="text-align:center;width=200px;"            |      <span style="color:#d33">X</span>          ||  rowspan="1" style="text-align:center;width=200px;"            |        1.270 (50)          ||  rowspan="1" style="text-align:center;width=200px;"            |        1.270 (50)          ||  rowspan="1" style="text-align:center;width=200px;"            |        1.524 (60)        ||    rowspan="1" style="text-align:center;width=200px;"            |      1.270 (50)      || rowspan="1" style="text-align:center;width=200px;"            |      1.270 (50)        ||  rowspan="1" style="text-align:center;width=200px;"            |    1.524 (60)         
 +
|- 
 +
|              rowspan="1" style="text-align:center;background-color:#E9967A"            |    10          ||      rowspan="1" style="text-align:center;width=200px;"            |          1.524 (60)        ||    rowspan="1" style="text-align:center;width=200px;"            |      <span style="color:#d33">X</span>          ||  rowspan="1" style="text-align:center;width=200px;"            |        1.524 (60)          ||  rowspan="1" style="text-align:center;width=200px;"            |        1.524 (60)            ||  rowspan="1" style="text-align:center;width=200px;"            |        1.524 (60)        ||    rowspan="1" style="text-align:center;width=200px;"            |      1.524 (60)      || rowspan="1" style="text-align:center;width=200px;"            |      1.524 (60)        ||  rowspan="1" style="text-align:center;width=200px;"            |    1.524 (60)           
 +
|- 
 +
|              rowspan="1" style="text-align:center;background-color:#FA8072"            |    15          ||      rowspan="1" style="text-align:center;width=200px;"            |          2.032 (80)          ||    rowspan="1" style="text-align:center;width=200px;"            |      <span style="color:#d33">X</span>            ||  rowspan="1" style="text-align:center;width=200px;"            |        2.032 (80)          ||  rowspan="1" style="text-align:center;width=200px;"            |        2.032 (80)          ||  rowspan="1" style="text-align:center;width=200px;"            |        2.032 (80)        ||    rowspan="1" style="text-align:center;width=200px;"            |      <span style="color:#d33">X</span>        || rowspan="1" style="text-align:center;width=200px;"            |      2.032 (80)        ||  rowspan="1" style="text-align:center;width=200px;"            |    <span style="color:#d33">X</span>           
 +
|-
 +
|} 
 +
 
 +
:<small>*Induction welding subject to the securement requirements in the applicable membrane Standard, Part 3.</small>
 +
 
 +
====9.2.1.2. Fasteners and Adhesives====
 +
 
 +
<ol>
 +
<li>Fasteners and adhesives shall conform to the material requirements in [[#Section 3.2. Materials | Section 3.2.]]
 +
</li></ol>
 +
 
 +
====9.2.1.3. Protection Materials====
 +
 
 +
<ol>
 +
<li>When installed membranes require protection, the requirements in [[#14.2.1.2. Membrane Protection | Article 14.2.1.2.]] apply.
 +
</li></ol>
 +
 
 +
===9.2.2. Materials Storage and Handling===
 +
====9.2.2.1. Protection from the Weather====
 +
 
 +
<ol>
 +
<li>All uninstalled materials must be protected from weather by properly stacking them above ground, or above the roof surface, in or beneath covers that are weather-resistant and secured against displacement by wind (See also [[#4.2.1.1. Use of Accepted Materials | Article 4.2.1.1., "Use of Accepted Materials"]]).
 +
</ol></li>
 +
 
 +
===9.2.3. Accessories===
 +
====9.2.3.1. Accessories Supplied by Membrane Manufacturer====
 +
 
 +
<ol>
 +
<li>All membrane accessory components must be supplied by and acceptable to the ''manufacturer''.
 +
</ol></li>
 +
 
 +
==Section 9.3. Application==
 +
===9.3.1. Guarantee Term Requirements===
 +
====9.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====9.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>utilize only those membranes listed in {{hilite | '''Table 9.2.1.1.''' || 2025-October-25 }} that qualify for a '''''RoofStar 15-year Guarantee''''', and
 +
<li>must cover all T-joints with
 +
<ol>
 +
<li>proprietary covers sealed along all edges with the membrane sealant, or
 +
<li>a field-fabricated cover fit to extend past the intersecting membranes 101.6 mm (4”), using unreinforced PVC covers.
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===9.3.2. All Systems===
 +
====9.3.2.1. Preparation of Substrate====
 +
 
 +
<ol>
 +
<li>All supporting decks must be acceptable to the ''manufacturer'' and must be
 +
<ol>
 +
<li>made suitable for roofing by others (trades other than the ''Contractor''),
 +
<li>dimensionally stable,
 +
<li>structurally sound,
 +
<li>capable of accommodating ''roof system'' component movement,
 +
<li>clean,
 +
<li>adequately dry and frost-free {{hilite | (Ref. || 2023-October-28 }} [[PVC_Roof_Systems_Standard#2.1.5._Roof_Decks | {{hilite | Subsection 2.1.5., "Roof Decks" || 2023-October-28 }}]]),
 +
<li>reasonably smooth and free of abrupt elevation changes, and
 +
<li>absolutely free of
 +
<ol>
 +
<li>dust,
 +
<li>dirt,
 +
<li>voids,
 +
<li>open cracks,
 +
<li>sharp projections,
 +
<li>contaminants,
 +
<li>objectionable surface treatments,
 +
<li>laitance (concrete must be “native”),
 +
<li>oil, and
 +
<li>grease.
 +
</li></ol>
 +
</li></ol>
 +
<li>{{hilite | A properly secured, accepted overlay board is required || 2023-June-16 }} (Ref. [[#Part 5 - Deck and Wall Overlays | Part 5]])
 +
<ol>
 +
<li>{{hilite | for any ''deck'' that does not meet the deck fastening criteria set out in || 2023-June-16 }} [[#2.1.5.3. All Wood Roof Decks | Article 2.1.5.3.]],
 +
<li>{{hilite | for any ''deck'' that cannot be repaired or otherwise made suitable for roofing, || 2023-June-16 }} and
 +
<li>{{hilite | for mass timber decks (plywood overlay shall conform to the requirements in || 2023-June-16 }} [[#5.2.1.1. Suitability of Overlays| Article 5.2.1.1.]]
 +
</li></ol>
 +
<li>{{hilite | Substrates must be primed, if required by the ''manufacturer''. || 2023-June-16 }}
 +
<li>{{hilite | All plane transitions must be prepared or reinforced in the manner specified by the ''manufacturer''. || 2023-June-16 }}
 +
<li>All concrete decks
 +
<ol>
 +
<li>must cure at least 28 days before receiving adhered membranes, but this limitation may be reduced if both the building envelope engineer and the ''manufacturer'' expressly permit membrane application within the first 28 days after pouring, and their respective signed letters of permission are furnished to the '''''Guarantor''''' forthwith, to be included with the ''project'' record ("adhered", as used in this requirement, means fully or intermittently bonding any membrane to the deck with an adhesive, hot asphalt (bitumen), or heat),
 +
<li>must be finished by others to render a surface profile range suitable to the membrane manufacturer, to facilitate a ‘mechanical bond’ between the substrate and the membrane, and
 +
<li>constructed with pre-cast panels must be made continuous and even; all side and end-joints must be filled and reinforced according to the ''manufacturer’s'' published requirements.
 +
</li></ol>
 +
<li>Plywood decks with cracks or loose knots must be filled or overlaid with plywood (see [[#5.2.1.1. Suitability of Overlays| Article 5.2.1.1.]]).
 +
<li>{{hilite | Joints between plywood deck panels must be prepared and reinforced according to the manufacturer’s published requirements. || 2023-June-16 }}
 +
<li>Wood decks must be overlaid with an acceptable deck overlay panel when the specified membrane system will be adhered directly to the deck (Ref. [[#Part 5 - Deck and Wall Overlays | Part 5]]), but an overlay is not required (unless specified by the ''Design Authority'') for
 +
<ol>
 +
<li>self-adhered air or vapour controls, or
 +
<li>mechanically fastened or loose-laid membranes.
 +
</li></ol>
 +
<li>If surface drying is required prior to roofing, the ''deck'' must be dried with blown air.
 +
</li></ol>
 +
 
 +
====9.3.2.2. Preparation of Roofing Materials====
 +
 
 +
<ol>
 +
<li>{{hilite | Membranes must be unrolled, prepared, and conditioned for installation, as required by the ''manufacturer''. || 2023-June-16 }}
 +
</li></ol>
 +
 
 +
====9.3.2.3. General Requirements for Membrane Application====
 +
 
 +
<ol>
 +
<li>Membranes must be installed according to the manufacturer's published instructions, details, and installation techniques unless exceeded by this Standard.
 +
<li><span class="principles">Membranes should be installed beginning at the lowest point of the roof</span>.
 +
<li>All membrane openings at eaves, walls, vents, etc. must be sealed during application to prevent moisture from entering the ''roof system''.
 +
<li>An intermediate separation layer must be installed between all fully adhered membranes and rough deck surfaces in a ''protected roof system''.
 +
<li>Membranes must be installed according to the manufacturer's published instructions, details and installation techniques unless exceeded by this Standard.
 +
<li>Regardless of how the field membrane is secured, all membranes must be mechanically secured with suitable fasteners, used at intervals conforming to the ''manufacturer's'' published requirements (unless exceeded by these requirements)
 +
<ol>
 +
<li>around the perimeter,
 +
<li>at a slope change greater than 1:6 (2" in 12"), and
 +
<li>around all curbs.
 +
</li></ol>
 +
<li>When the roof is designed as a "MARS" assembly, the membrane must be mechanically secured at all drains and protrusions, conforming to the ''manufacturer's'' published requirements.
 +
<li>Field test welds must be performed on a daily basis, prior to welding, and thereafter at 2-hour intervals.
 +
<li>When welding commences before the field Observer can verify the field test weld, a cut test may be required.
 +
<li>{{hilite | Before any roof covering, structure or equipment is installed, roof membranes must be || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | inspected, || 2023-June-16 }}
 +
<li>{{hilite | scanned for breaches, when an integrity scan is required by this Standard, || 2023-June-16 }} and
 +
<li>{{hilite | free of deficiencies. || 2023-June-16 }}
 +
</li></ol>
 +
<li>At the end of a day, or when installation must be stopped because of circumstance (such as inclement weather), the new ''roof system'' membrane must be temporarily and continuously sealed to ensure the building and any new ''roof system'' components are protected from exposure to, and damage by, the weather.
 +
</li></ol>
 +
 
 +
====9.3.2.4. Cold and Inclement Weather Application====
 +
 
 +
<ol>
 +
<li>Installation during cold weather must follow the membrane manufacturer’s guidelines for storage and membrane conditioning.
 +
</li></ol>
 +
 
 +
====9.3.2.5. Reserved====
 +
 
 +
====9.3.2.6. Membrane Seams====
 +
 
 +
<ol>
 +
<li>All field membrane seams must be
 +
<ol>
 +
<li>clean and dry,
 +
<li>fully rolled,
 +
<li>free of fish-mouths,
 +
<li>installed so that any membrane laps are located at least 914.4 mm (36”) from the centre of any roof field drain, except where drain sumps are employed,
 +
<li>sealed with visible, continuous edge sealant (when required by the ''manufacturer''),
 +
<li>covered at T-joints with a proprietary cover sealed along all edges with the membrane sealant, or with a field-fabricated cover fit to extend past the intersecting membranes 76.2 mm (3”), using unreinforced PVC covers,
 +
<li>installed so that, {{hilite | where in-seam fasteners are used along the length of the membrane, adjacent membranes overlap each other at least 137.5 mm (5 1/2")|| 2022-February-5 }},
 +
<li>sealed
 +
<ol>
 +
<li>at least 38.1 mm (1-1/2”) wide using a robotic welder, and seams probed to verify a consistent bond,
 +
<li>at least 50.5 mm (2”) wide using a hand-held welder, and seams probed to verify a consistent bond, and
 +
<li>with visible, continuous edge sealant (when required by the membrane manufacturer), and
 +
</li></ol>
 +
<li>covered at T-joints with a proprietary cover sealed along all edges with the membrane sealant, or with a field-fabricated cover fit to extend past the intersecting membranes 76.2 mm (3”), using unreinforced PVC covers.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====9.3.2.7. Protection of Membranes====
 +
 
 +
<ol>
 +
<li>The ''Contractor'', and other trades who use primers for self-adhering membranes typically installed on ''walls'' or around doors, window, or other ''wall penetrations, must protect membranes
 +
<ol>
 +
<li>from splashed or dripped primer used to enhance adhesion of self-adhering membranes, as the primer may damage the membranes and cause leaks, and
 +
<li>from accidental damage, including damage by staged materials, scaffolding, foot and equipment traffic, and anything else that may pose a hazard to the integrity of the membrane.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====9.3.2.8. Transitions with Water-shedding Systems====
 +
 
 +
<ol>
 +
<li>{{hilite |Where slopes less than 1:16 (3/4" in 12") intersect  a ''water-shedding system'', the ''waterproofing system'' must be designed to extend up the ''water-shedding system'' slope as described in [[#10.3.7.2. Intersections with Water-Shedding Roofs | Article 10.3.7.2.]], using methods conforming to the general application requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]] || 2020-July-3 }}
 +
</li></ol>
 +
 
 +
====9.3.2.9. Walkways====
 +
 
 +
<ol>
 +
<li>{{hilite | Any walkway pads or supports capable of absorbing solar radiation must be installed on a non-bonding slip sheet, to protect the membrane from damage by heat. || 2023-June-16 }}
 +
<li>When pavers are used as the walkway material, they must be
 +
<ol>
 +
<li>spaced no closer than 3.78 mm (1/8″),
 +
<li>supported by non-abrasive pads or proprietary pedestals providing a minimum of 12.7 mm (1/2″) of vertical separation to permit adequate airflow and leveling {{hilite | (Slip sheets under pedestals may be necessary to prevent membrane abrasion) || 2020-July-3 }}, and
 +
<li>{{hilite | secured against displacement by wind. || 2020-February-15 }}
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===9.3.3. Membrane Application Methods===
 +
(The requirements in [[#9.3.2. All Systems | Subsection 9.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.3.3.1. Self-adhered and Adhesive-applied Membranes====
 +
(See [[Notes to PVC Standard#A-9.3.3.1. | Note A-9.3.3.1.]])
 +
 
 +
<ol>
 +
<li>Fully adhered single-ply membranes must not be installed directly to a supporting wood ''deck'' structure but may be applied over a RoofStar-accepted ''deck overlay'' suitably fastened to the ''deck''.
 +
<li>All Self-adhered and adhesive-applied membranes must be
 +
<ol>
 +
<li>applied to a suitable, clean, dry substrate and in keeping with the manufacturer’s published instructions,
 +
<li>installed only when the ambient air temperature meets or exceeds the temperature permitted by the manufacturer, and
 +
<li>fully rolled or broomed, as required by the membrane manufacturer, to ensure even, full contact with the substrate.
 +
</li></ol>
 +
<li><span class="principles">Air bubbles should be avoided and must fall within the permissible tolerances provided by the membrane manufacturer or the ''Tested Assembly''</span>.
 +
<li>Self-adhered membranes, in addition to the general requirements above, shall be installed over a primed membrane lap, when required by the ''manufacturer''.
 +
<li>Adhesive-applied membranes, in addition to the general requirements above, must be installed with bonding adhesive evenly applied to both the substrate and the membrane, and allowed to dry to the touch, or as otherwise specified by the ''manufacturer''.
 +
<li>End laps must be sealed in keeping with the ''manufacturer’s'' published instructions, and when a cover strip is required, refer to the requirements in [[#9.3.2.3. General Requirements for Membrane Application | Article 9.3.2.3.]]
 +
</li></ol>
 +
 
 +
====9.3.3.2. Mechanically Attached Membranes====
 +
(See also [[#9.3.2.6. Membrane Seams | Article 9.3.2.6., "Seams"]])
 +
 
 +
<ol>
 +
<li>Whenever possible, mechanically fastened membranes must be oriented perpendicular to steel ''deck'' flutes, to distribute fasteners across the ''deck''.
 +
<li>Membranes must be secured with fasteners and stress plates that are
 +
<ol>
 +
<li>specifically designed for the application of the specified and installed membrane, or
 +
<li>listed in the ''Tested Assembly'' report as an acceptable alternative (substitutions, without the written consent of the primary membrane manufacturer, are not permitted and may void the '''''RoofStar Guarantee''''').
 +
</li></ol>
 +
<li>Unless otherwise listed in the assembly components of a ''Tested Assembly'', membranes shall be fastened with self-drilling purpose-made #14 screws having a deep-recessed head.
 +
</li></ol>
 +
 
 +
====9.3.3.3. Hot Asphalt-adhered Membranes====
 +
 
 +
<ol>
 +
<li>Only fleece-backed membranes may be installed with hot asphalt.
 +
<li>All concrete decks to receive adhered membranes shall be primed {{hilite | with the ''manufacturer’s'' asphaltic primer|| 2020-July-3 }}.
 +
<li>Hot asphalt
 +
<ol>
 +
<li>shall conform to the ''manufacturer's'' requirements,
 +
<li>must be at least 205°C (400°F) in order to fuse with the membrane,
 +
<li>must be applied at the rates published by the asphalt manufacturer for the particular substrate, and
 +
<li><span class="principles">should be mopped no more than 1 m (3') ahead of the roll</span>.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====9.3.3.4. Reserved====
 +
 
 +
====9.3.3.5. Reserved====
 +
 
 +
====9.3.3.6. Reserved====
 +
 
 +
===9.3.4. Conventionally Insulated Systems===
 +
(The requirements in [[#9.3.2. All Systems | Subsection 9.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.3.4.1. Membrane Application Methods====
 +
 
 +
<ol>
 +
<li>PVC membranes installed as part of a conventionally insulated ''roof systems'' shall be
 +
<ol>
 +
<li>self-adhered and adhesive-applied ([[#9.3.3.1. Self-adhered and Adhesive-applied Membranes | Article 9.3.3.1.]]),
 +
<li>mechanically attached ([[#9.3.3.2. Mechanically Attached Membranes | Article 9.3.3.2.]]), or
 +
<li>hot asphalt-adhered ([[#9.3.3.3. Hot Asphalt-adhered Membranes | Article 9.3.3.3.]]).
 +
</li></ol>
 +
<li>Membrane securement shall conform to the design requirements for resistance of ''Specified Wind Loads''.
 +
</li></ol>
 +
 
 +
====9.3.4.2. Warning Zones====
 +
(See also [[#9.1.4.2. Warning Zones | Article 9.1.4.2.]])
 +
 
 +
<ol>
 +
<li>Self-adhering tapes that are applied on top of the primary membrane, to serve a warning zone, must be
 +
<ol>
 +
<li>acceptable to the ''manufacturer'', and
 +
<li>installed on a clean, dry membrane according to the published instructions of all concerned manufacturers.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===9.3.5. Uninsulated Systems===
 +
(The requirements in [[#9.3.2. All Systems | Subsection 9.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.3.5.1. Membrane Application Methods====
 +
 
 +
<ol>
 +
<li>PVC membranes installed as part of an uninsulated ''roof system'' shall be
 +
<ol>
 +
<li>self-adhered and adhesive-applied ([[#9.3.3.1. Self-adhered and Adhesive-applied Membranes | Article 9.3.3.1.]]),
 +
<li>mechanically attached ([[#9.3.3.2. Mechanically Attached Membranes | Article 9.3.3.2.]]), or
 +
<li>hot asphalt-adhered ([[#9.3.3.3. Hot Asphalt-adhered Membranes | Article 9.3.3.3.]]).
 +
</li></ol>
 +
<li>Membrane securement shall conform to the design requirements for resistance of ''Specified Wind Loads''.
 +
</li></ol>
 +
 
 +
====9.3.5.2. Membranes Installed on Concrete====
 +
 
 +
<ol>
 +
<li>Concrete decks shall be prepared as required in [[#9.3.2.1. Preparation of Substrate | Article 9.3.2.1.]], and the application of the primary membrane shall conform to the general requirements in Article 9.3.2.3. and the published requirements of the ''manufacturer''.
 +
</li></ol>
 +
 
 +
====9.3.5.3. Membranes Installed on Wood Decks====
 +
 
 +
<ol>
 +
<li>Wood decks shall conform to the requirements for wood ''decks'' in [[#2.1.5. Roof Decks | Subsection 2.1.5.]], shall be prepared as required in [[#9.3.2.1. Preparation of Substrate | Article 9.3.2.1.]], and application of the primary membrane shall conform to the general requirements in [[#9.3.2.3. General Requirements for Membrane Application | Article 9.3.2.3.]]
 +
<li>EPDM membranes shall not be fully adhered directly to a supporting wood ''deck'' structure, and instead shall be installed on a RoofStar-accepted ''deck overlay'' board.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====9.3.5.4. Reserved====
 +
 
 +
====9.3.5.5. Warning Zones====
 +
 
 +
<ol>
 +
<li>When warning zones are specified as part of the primary roof membrane, they must follow the requirements in [[#9.3.4.2. Warning Zones | Article 9.3.4.2.]]
 +
</li></ol>
 +
 
 +
====9.3.5.6. Reserved====
 +
 
 +
===9.3.6. Protected Roof Systems===
 +
(The requirements in [[#9.3.2. All Systems | Subsection 9.3.2., "All Systems"]], shall be read together with the following articles)
 +
 
 +
====9.3.6.1. Membrane Application Methods====
 +
 
 +
<ol>
 +
<li>PVC membranes installed as part of a ''protected roof system'' shall be
 +
<ol>
 +
<li>self-adhered and adhesive-applied ([[#9.3.3.1. Self-adhered and Adhesive-applied Membranes | Article 9.3.3.1.]]), or
 +
<li>hot asphalt-adhered ([[#9.3.3.3. Hot Asphalt-adhered Membranes | Article 9.3.3.3.]]).
 +
</li></ol>
 +
<li>Membranes, membrane flashing, and insulation must be installed in keeping with the requirements found elsewhere in this Standard.
 +
</ol></li>
 +
 
 +
====9.3.6.2. Membrane Protection====
 +
 
 +
<ol>
 +
<li>{{hilite | Installed membranes must be protected from damage as soon as possible after integrity testing. || 2023-June-16 }}
 +
</ol></li>
 +
 
 +
====9.3.6.3. Procurement and Installation of Other Materials====
 +
 
 +
<ol>
 +
<li>All components, including the gravel or paver ballast, must be supplied and installed by the ''Contractor''.
 +
<li>{{hilite | Where a ''vegetated roof system'' (VRS) is used as ballast and the ''VRS'' || 2025-October-25 }}
 +
<ol>
 +
<li>{{hilite | is intended to qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the VRS shall conform to the design, material, and construction requirements of the || 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard {{hilite |“RGC Standard for Vegetated Roofs” || 2025-October-25 }}].
 +
<li>{{hilite | is not intended to qualify for a '''''RoofStar Vegetated Roof Guarantee''''',|| 2025-October-25 }} may be installed by others but
 +
<li>the work must be coordinated with the ''Contractor'', and
 +
<li>the VRS must be installed immediately upon completion of the ''Contractor’s'' work, to ensure the ''roof system'' is held in place (See also [[#14.1.3.12. Vegetated Roof Systems | Article 14.1.3.12.]]).
 +
</ol></li>
 +
</ol></li>
 +
</ol></li>
 +
 
 +
<hr>
 +
 
 +
<div id=PART_10></div>
 +
 
 +
=Part 10 - Perimeters and Walls=
 +
==Section 10.1. Design==
 +
===10.1.1. General===
 +
====10.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====10.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].
 +
</li></ol>
 +
 
 +
===10.1.2. Guarantee Term Requirements===
 +
====10.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====10.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===10.1.3. All Systems===
 +
====10.1.3.1. General Requirements====
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' is responsible to specify {{hilite | the connections between the ''roof system'' and ''walls'' or other building components, particularly where the ''continuity'' of air, vapour and water-resistive ''control layers'' is critical or required by Code (See [[#Part 6 - Air and Vapour Controls | Part 6, "Air and Vapour Controls"]]|| 2021-October-30 }}).
 +
<li>''Projects'' must follow proper sequencing; materials must positively integrate (“shingle fashion”) with other materials, ''systems'', or ''assemblies'', including those installed by other trades.
 +
<li>{{hilite | Wall surfaces must be suitable to receive roof materials, or they must be covered with an accepted overlay panel material listed in || 2023-June-16 }} [[Division_C | Division C]].
 +
<li>{{hilite | Where the roof deck and an adjoining wall are constructed of dissimilar materials (i.e., steel deck joined to concrete wall), differing expansion and contraction rates for the two materials may adversely affect the roof system and, in particular, the field and flashing membranes, and therefore it is incumbent upon the ''Design Authority'' to consult the ''manufacturer's'' literature and specify the correct materials for each particular roof-wall intersection || 2023-June-16 }} (See [[Notes to PVC Standard#A-10.1.3.1.(4) | Note A-10.1.3.1.(4)]]).
 +
<li>{{hilite | Sheet membrane turned up any vertical surface (i.e., a ''wall'' or ''parapet''), or sheet membrane used for flashing, must || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | be mechanically secured at the field edge (the base of the plane transition) using the ''manufacturer's'' proprietary securement system, and || 2024-January-31 }}
 +
<li>{{hilite | be ''fully bonded'' to an acceptable substrate. || 2024-January-31 }}
 +
</li></ol>
 +
<li>{{hilite | When EIFS cladding is cut to permit roofing work, the exposed insulation must be restored with back-wrapped mesh, a base coat and finish coat, or with another method that is equal or superior|| 2022-October-22 }} (See [[Notes to PVC Standard#A-10.1.3.2.(5)| Note A-10.1.3.2.(5)]]).
 +
</li></ol>
 +
 
 +
====10.1.3.2. Membrane Flashing====
 +
 
 +
<ol>
 +
<li>All changes in plane in the ''roof system'', and all intersections between the roof field and roof edges, ''walls'', or ''parapets'', must be
 +
<ol>
 +
<li>covered with the field membrane turned up the vertical surface, or
 +
<li>flashed with sheet membrane, or with a reinforced liquid membrane flashing system that is acceptable to the '''''Guarantor''''', acceptable to the ''manufacturer'', and permitted by this Standard.
 +
</li></ol>
 +
<li>Sheet membrane turned up any vertical surface (i.e., a ''wall'' or ''parapet''), or sheet membrane used for flashing, must be self-adhered, adhered with adhesives, or adhered with hot asphalt (bitumen), and shall conform to the requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]]
 +
<li>{{hilite | ''Linear metal flashing'', or a RoofStar-accepted, fleece-reinforced 2-component polymethyl methacrylate (PMMA) liquid membrane flashing, is required at all roof edges, upper membrane terminations, curb tops, and at the tops of parapets, to protect sheet membrane flashing from damage. || 2023-June-16 }}
 +
<li>{{hilite | All ''linear metal flashing'' used for the termination of sheet membrane flashing shall be installed in keeping with [[#13.1.3.3. Securement | Article 13.1.3.3., "Securement"]]|| 2021-October-30 }}.
 +
<li>Sheet membrane flashing must be protected from damage caused by foot traffic or shifting coverings, using base metal flashing or other methods acceptable to the '''''Guarantor'''''.
 +
<li>Where a roof allows water to freely drain off the edge, and the roof adjoins a ''wall'', a cricket or diverter should be installed at the roof edge to prevent water intrusion behind wall finishes.
 +
</li></ol>
 +
 
 +
==={{hilite | 10.1.4. Perimeter Details, High Walls, and Openings|| 2021-October-30 }}===
 +
(The requirements in [[#10.1.3. All Systems | Subsection 10.1.3., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.1.4.1. Parapets====
 +
 
 +
<ol>
 +
<li>{{hilite | Parapets may be waterproofed before a coping, its membrane, and metal coping (cap) flashing are installed, but the coping will be excluded from coverage unless the parapet membranes are carried onto and over the coping in accordance with the application requirements described in || 2024-January-31 }} [[#10.3.4.1. Parapets | Article 10.3.4.1.]]
 +
<li>On roofs where ''overburden'' or ballast extends to the roof edge, ''parapets'' must be designed to retain the material against wind scouring, but in any event, they shall be no less than 203.2 mm (8”) in height when measured from the top of the ''finished roof system surface''.
 +
<li>''Parapets'' are optional, but when a parapet is specified it must be no less than 127 mm (5") in height, measured from the ''finished roof system surface'' to the inside top edge of the ''parapet'' (this height requirement facilitates proper metal cap flashing securement) (Ref. [[#10.3.4.1. Parapets | Article 10.3.4.1.]]; also see [[#13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.3.2.3., "Cap Flashing, Counter-flashing, and Reglet Flashing"]]).
 +
<li>{{hilite | ''Parapets'' with cavities must be designed with consideration for ventilation. || 2024-January-31 }}
 +
<li>{{hilite | All ''parapet'' copings that form part of the Contractor’s scope of work must provide solid support for metal coping (cap) flashings and shall be suitable to receive mechanical fasteners (Ref. || 2024-January-31}} [[#13.1.3.6. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.1.3.6.]]; {{hilite | also see || 2024-January-31 }} [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1.]]).
 +
<li>{{hilite | When the width of any ''parapet'' exceeds 101.6 mm (4"), the coping (installed by other trades) must || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | slope toward the roof-side of the ''parapet wall'', and shall || 2024-January-31}}
 +
<li>{{hilite | be sloped to meet the minimum requirements for metal coping (cap) flashing in Table 13.1.-A, || 2024-January-31 }} [[#13.1.3.4. Gauge, Dimension Limitations, and Seams | Article 13.1.3.4.]]
 +
</li></ol>
 +
<li>{{hilite | Membranes specified for parapets with a pre-cast or stone coping must be at least 2.5 mm thick. || 2024-June-15 }}
 +
</li></ol>
 +
 
 +
====10.1.4.2. Low Profile Edges====
 +
 
 +
<ol>
 +
<li>A metal-edge termination detail may be used on a ''conventionally insulated'' or ''uninsulated roof system'' but must be fully blocked to support the metal and membrane edges.
 +
<li>Canted edges are not required or recommended and may be retained on existing roofs, but
 +
<ol>
 +
<li>this shall be at the discretion of  the ''Design Authority'', and
 +
<li>the canted substrates must be wood.
 +
</li></ol>
 +
<li>When, for aesthetic reasons, face-fastened metal flashing covering a canted edge is not desirable, cants may be replaced with
 +
<ol>
 +
<li>a metal edge roof termination, or
 +
<li>a ''parapet'', designed and constructed in keeping with the minimum requirements in [[#10.1.4.1. Parapets | Article 10.1.4.1.]] and [[#10.3.4.1. Parapets | Article 10.3.4.1.]]
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====10.1.4.3. {{hilite | Tall Parapets || 2024-January-31 }}====
 +
 
 +
<ol>
 +
<li>When a {{strike| ''roof system'' transitions to a ''wall'' greater than 609.6 mm (24") in height (a "High Wall"), and the ''wall'' || 2023-January-26 }} {{hilite | ''parapet'' higher than 609.6 mm (24") (a ''tall parapet'') || 2024-January-31 }} is specified as part of the ''Contractor’s'' scope of work,
 +
<ol>
 +
<li>membranes {{strike| or water-resistive barrier materials || 2023-January-26 }} specified for {{strike| ''walls'' || 2023-January-26 }} {{hilite | the vertical surface of the ''wall'', above the primary roof membrane flashing, must conform to the requirements in || 2024-January-31 }} [[#10.2.1.1. Flashing Membranes | Article 10.2.1.1.]] {{strike| must be compatible with the roof membrane || 2023-January-26 }}, and
 +
<li>additional mechanical securement shall conform to the requirements in this Part, or to the requirements of the ''manufacturer'', whichever is greater.
 +
</li></ol>
 +
<li>All roof intersections with ''walls'' shall conform to the requirements in [[#10.1.3. All Systems | Subsection 10.1.3., "All Systems"]], and shall maintain ''continuity'' with the wall ''control layers'' for air, vapour, and water.
 +
<li>{{strike| ''Walls''|| 2023-January-26 }} {{hilite | ''Tall parapets'' with cavities must be designed with consideration for ventilation.|| 2024-January-31 }}
 +
</li></ol>
 +
 
 +
====10.1.4.4. Reserved====
 +
====10.1.4.5. Doors, Windows, and Wall Openings====
 +
(Ref. Construction Detail [[SBS Low Door Opening | "Low Door Opening"]])
 +
 
 +
<ol>
 +
<li><span class="principles">{{hilite | Rough openings formed or framed in walls to accommodate doors, windows, curtain-wall assemblies, or other penetrations (i.e., ventilation grilles), should be oversized to allow for the build-up of ''roof system'' flashing membrane || 2023-June-16 }}</span>.
 +
<li>Low-clearance openings (rough openings less than 203.2 mm (8") in height, measured from the ''finished roof system surface'')
 +
<ol>
 +
<li><span class="principles">{{hilite | should be avoided, particularly when designing a roof to support any type of ''overburden'' (i.e., a ''vegetated roof system'') || 2025-October-25 }}</span>, and
 +
<li><span class="recommended">are not recommended because of their propensity to leak</span> {{hilite | (a leak through a low opening is not covered by a '''''RoofStar Guarantee''''') || 2025-October-25 }}.
 +
</li></ol>
 +
<li>{{hilite | When a low-clearance opening is unavoidable or specified (i.e., to comply with Code for level access and egress) || 2025-October-25 }},
 +
<ol>
 +
<li>the roof must be sloped away from the opening,
 +
<li>the rough opening shall not be less than 101.6 mm (4") above the ''drainage plane'' and must be waterproofed in keeping with the requirements in [[#10.3.4.5. Doors, Windows, and Wall Openings | Article 10.3.4.5.]],
 +
<li>the ''drainage plane'' must be free of obstructions and materials capable of displacing water,
 +
<li><span class="recommended">the low-clearance opening should be protected by an overhang wherever practical, to minimize water intrusion that occurs from wind-driven rain or from snow accumulation</span>, and
 +
<li>the opening must be protected by an ''overflow drain'',
 +
<ol>
 +
<li>situated on the same roof area as the low-clearance opening,
 +
<li>located at least 25.4 mm (1") below the elevation of the rough opening, and
 +
<li>conforming to the spacing and capacities required by the "National Plumbing Code of Canada", Division B, [https://nrc-publications.canada.ca/eng/view/ft/?id=6e7cabf5-d83e-4efd-9a1c-6515fc7cdc71#%5B%7B%22num%22%3A310%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2Cnull%2C250%2Cnull%5D Article 2.4.10.4.] (See also [[#11.1.3.1. Principles of Design | Article 11.1.3.1., "Principles of Design"]]).
 +
</li></ol>
 +
</li></ol>
 +
<li>When the building interior transitions to {{hilite | an accessible || 2025-October-25 }} {{strike| a patio or occupied || 2024-October-28 }} roof surface through a flush door opening,
 +
<ol>
 +
<li>the design shall conform to the requirements in this Part, and to [[#14.1.3.11. Wearing Surfaces | Article 14.1.3.11.]], and
 +
<li>{{hilite | the membrane installed over the rough opening sill must be protected from abrasion damage as described in || 2025-October-25 }} [[#10.3.4.5. Doors, Windows, and Wall Openings | {{hilite | Sentence 10.3.4.5.(6) || 2025-October-25 }}]] {{hilite | below || 2025-October-25 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===10.1.5. Reserved===
 +
 
 +
====10.1.6.2. Control Joints (Roof Dividers)====
 +
(See [[Notes to PVC Standard#A-10.1.6.2. | Note A-10.1.6.2.]]; also see [[#10.3.6.2. Control Joints (Roof Dividers) | Article 10.3.6.2.]])
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' is responsible
 +
<ol>
 +
<li>to determine the need for ''control joints'' (roof dividers), and
 +
<li>to specify their location and design.
 +
</li></ol>
 +
{{strike| <li><span class="principles">The use of ''control joints'' (roof dividers) should be evaluated using the criteria in [[#10.1.6.2. Control Joints (Roof Dividers) | Article 10.1.6.2.]]</span> || 2024-October-26 }}
 +
<li>The ''Design Authority'' must consider specifying ''control joints''
 +
<ol>
 +
<li>when a single roof area exceed 61 m (approx. 200’) in length and the membrane is limited in its flexibility (consult the manufacturer for their recommendations),
 +
<li>for buildings in climate zones with significant seasonal temperature swings,
 +
<li>where an addition joins an existing building,
 +
<li>where the deck type changes (i.e., steel transitions to wood),
 +
<li>where insulation in the ''roof system'' changes thickness,
 +
<li>where the ''roof deck'' changes in elevation, and
 +
<li>when interior heating conditions change.
 +
</li></ol>
 +
<li><span class="principles">Specified and detailed ''control joints'' should be located at the high points of the roof, so that water drains away from both sides of the divider and is not impeded by it</span>.
 +
<li>''Control joints'' must be
 +
<ol>
 +
<li>constructed as a raised divider,
 +
<li>sloped on the top face,
 +
<li>{{hilite | fabricated with a minimum height of 203.2 mm (8"), measured from the ''finished roof system surface'', but this may be reduced to a height of 101.6 mm (4”) if the ''control joint'' is fully enveloped in no fewer than two plies of sheet membrane flashing, or to 127 mm (5”) if capped with linear metal flashing (Ref. || 2023-October-28 }} [[#12.1.3.4. Curbs, Sleepers, and Equipment Pads | Article 12.1.3.4.]] {{hilite | concerning sleepers) || 2023-October-28 }}, and
 +
<li>waterproofed in keeping the requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]], together with the ''manufacturer’s'' published specifications for the detail.
 +
</li></ol>
 +
{{strike| <li>New and existing ''control joints'' may be no less than 127 mm (5"), provided the ''control joint'' is fully enveloped in sheet membrane flashing. || 2022-October-28 }}
 +
<li>{{hilite | Unless otherwise approved by the '''''Guarantor''''', ''control joints'' must be specified to divide a new ''roof system'' (addition) from existing ''roof systems'' || 2023-June-16 }} (Ref. [[#1.1.4.5. Tie-ins, Additions, and Alterations to Existing Roofing | Article 1.1.4.5.]]).
 +
</li></ol>
 +
 
 +
==={{hilite | 10.1.7. Intersections with Other Roof Systems|| 2021-October-30 }}===
 +
(The requirements in [[#10.1.3. All Systems | Subsection 10.1.3., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.1.7.1. Intersections with Water-shedding Roofs====
 +
 
 +
<ol>
 +
<li>Intersections with water-shedding roofs must be designed according to the requirements in [[#10.3.7.2. Intersections with Water-Shedding Roofs | Article 10.3.7.2.]]
 +
</li></ol>
 +
 
 +
====10.1.7.2. Intersections with Membrane Gutters====
 +
 
 +
<ol>
 +
<li>Refer to [[#11.1.4.3. Membrane Gutters | Article 11.1.4.3.]]
 +
</li></ol>
 +
 
 +
===10.1.8. Alternative Approaches for Membrane Flashing===
 +
(The requirements in [[#10.1.3. All Systems | Subsection 10.1.3., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.1.8.1. Specifying Hazard-reduction Strategies====
 +
 
 +
<ol>
 +
<li><span class="principles">The ''Design Authority'' should consider alternatives to heat-applied materials when the application process involves Hot Work</span> (Ref. [[#1.1.3.5. Hot Works | Article 1.1.3.5.]]) <span class="principles">and the substrate to which they will be applied is combustible, or when nearby structures, openings, or materials, present a fire hazard; in the alternative, choose a suitable separation or overlay material as protection from open flame</span>.
 +
<li>Self-adhering or adhesive-applied membranes as alternatives to heat-applied membranes are acceptable to the '''''Guarantor''''' and must also be acceptable to the ''manufacturer''.
 +
</li></ol>
 +
 
 +
==Section 10.2. Materials==
 +
(See [[Division_C | Division C, "Accepted Materials"]])
 +
 
 +
===10.2.1. Material Properties===
 +
====10.2.1.1. Flashing Membranes====
 +
 
 +
<ol>
 +
<li>Sheet membranes used {{strike| to flash parapets, curbs, walls, or joints || 2023-January-26 }} {{hilite | to flash the intersection of the roof field and perimeter walls || 2024-January-31 }} must conform to the membrane requirements found in [[#9.2.1.1. Membrane Composition, Thickness, and Selection | Article 9.2.1.1.]]
 +
<li>{{strike| Sheet membranes used to waterproof || 2023-January-26 }} When waterproofing the vertical plane of a {{strike| "High Wall" || 2023-January-26 }} {{hilite | ''tall parapet'' above the primary membrane ''roof system'' is specified as part of the ''Contractor's'' scope of work|| 2024-January-31 }}  (Ref. [[#10.1.4.3. Tall Parapets | Article 10.1.4.3.]] and [[#10.3.4.3. Tall Parapets | Article 10.3.4.3.]]), {{hilite | the membrane used on the vertical plane of the ''parapet'' shall || 2024-January-31 }}
 +
<ol>
 +
<li>{{strike| must || 2023-January-26 }} be compatible with the primary membrane,
 +
<li>{{strike| must || 2023-January-26 }} be self-adhering,
 +
<li>{{strike| shall || 2023-January-26 }} be declared suitable {{hilite | for the application || 2024-January-31 }} by the ''manufacturer'' {{hilite | (see || 2024-January-31 }} [[Notes to PVC Standard#A-10.2.1.1.(2)(3) | Note A-10.2.1.1.(2)(3)]]),
 +
<li>{{strike| shall || 2023-January-26 }} possess properties consistent with the design and characteristics of the ''wall'' assembly,
 +
<li>{{strike| must || 2023-January-26 }} possess a high softening point and a minimum flow temperature of 87.7°C (190°F) (ASTM D5147, "Standard Test Methods for Sampling and Testing Modified Bituminous Sheet Material") and
 +
<li>{{strike| shall|| 2023-January-26 }} have a thickness no less than 1 mm (.040”).
 +
</li></ol>
 +
<li><span class="principles">Some membranes may be susceptible to damage from bird droppings, pet urine, and chemical contamination (oils, solvents, or any discharge from a mechanical unit), and therefore they should be protected using measures designed in consultation with the ''manufacturer''</span>.
 +
<li>{{hilite |Fleece-reinforced liquid membrane flashing systems must be accepted by the '''''Guarantor''''' and proprietary to, or accepted by, the ''manufacturer''.|| 2021-October-30 }}
 +
</li></ol>
 +
 
 +
====10.2.1.2. Linear Metal Flashing====
 +
 
 +
<ol>
 +
<li>{{hilite | ''Linear metal flashing'' incorporated into roof perimeters and walls must conform to the materials and fabrication requirements in [[#Part 13 - Linear Metal Flashing | Part 13, "Linear Metal Flashing"]]|| 2020-July-3 }}.
 +
</li></ol>
 +
 
 +
====10.2.1.3. Reserved====
 +
====10.2.1.4. Sealants====
 +
 
 +
<ol>
 +
<li>{{hilite | Sealants applied to ''linear metal flashing'', where sheet membrane flashing is terminated, shall conform to the requirements in || 2023-June-16 }} [[#13.2.1.4. Sealants | Article 13.2.1.4.]]
 +
</li></ol>
 +
 
 +
===10.2.2. Securement Materials===
 +
====10.2.2.1. Fasteners====
 +
 
 +
<ol>
 +
<li>{{hilite |Where fasteners are used in the roof system|| 2020-July-3 }}
 +
<ol>
 +
<li>to secure waterproofing materials, they shall conform to the requirements in [[#3.2.2.1. Fasteners | Article 3.2.2.1.]]
 +
<li>to secure ''linear metal flashings'', they shall conform to the requirements in [[#13.2.1.4. Sealants | Article 13.2.1.4.]]
 +
</li></ol>
 +
</li></ol>
 +
 
 +
==Section 10.3. Application==
 +
===10.3.1. Guarantee Term Requirements===
 +
====10.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====10.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
 +
 
 +
===10.3.2. All Systems===
 +
====10.3.2.1. Substrate Preparation====
 +
 
 +
<ol>
 +
<li>All wall surfaces to which roofing materials must be installed (including Concrete Masonry Unit (CMU)) shall be
 +
<ol>
 +
<li>prepared in like manner to the ''roof deck'' (Ref. [[#9.3.2.1. Preparation of Substrate | Article 9.3.2.1.]]) and declared suitable by the ''manufacturer'', or
 +
<li>covered with a RoofStar-accepted overlay panel conforming to the material requirements in [[#5.2.1.3. Overlays for Walls | Article 5.2.1.3.]] and installed to conform to [[#5.3.2.5. Support, Arrangement, and Securement of Wall Overlays | Article 5.3.2.5.]]
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====10.3.2.2. Material Preparation====
 +
 
 +
<ol>
 +
<li>Membrane flashing shall be prepared following the ''manufacturer's'' published requirements.
 +
</li></ol>
 +
 
 +
====10.3.2.3. General Application Requirements for Perimeters and Walls====
 +
 
 +
<ol>
 +
<li>All changes in plane in the ''roof assembly'' must be waterproofed with a material acceptable to the '''''Guarantor'''''.
 +
<li>''Projects'' must follow proper sequencing so that materials, ''systems'', or ''assemblies'', installed by the ''Contractor'' correctly interface with materials, ''systems'', or ''assemblies'' installed by other trades, to establish or preserve ''continuity'' and ensure positive waterproofing connections (overlapping, “shingle fashion”).
 +
<li>When coordination with other trades requires some adaptation to the requirements in this Standard, any variance to proper detail sequencing must be approved in writing by the ''Design Authority''.
 +
<li>{{hilite | Sheet membrane turned up any vertical surface (i.e., a ''wall'' or ''parapet''), or sheet membrane used for flashing, must be installed to conform to the ''manufacturer's'' published instructions, and must|| 2021-October-30 }}
 +
<ol>
 +
<li>be mechanically secured at the field edge (the base of the plane transition) using the ''manufacturer's'' proprietary securement system,
 +
<li>{{hilite | be {{hilite | ''fully bonded'' || 2024-January-31 }} to an acceptable substrate,|| 2021-October-30 }}
 +
<li>be installed from the low point of the roof (for positive laps toward the drain),
 +
<li>{{hilite | provide at least 203.2 mm (8") of coverage on a vertical surface, immediately above the|| 2021-October-30 }} ''finished roof system surface'', (at least 304.8 mm (12") when air, vapour, or water control systems in ''wall assemblies'' are present or specified, to permit sufficient positive ''continuity''),
 +
<li>shall extend onto the field of the roof, as required by the ''manufacturer'' (when separate membrane flashing plies are used),
 +
<li>{{hilite | be installed without fish-mouths or wrinkles|| 2021-October-30 }},
 +
<li>{{hilite | be hand-rolled with a ''manufacturer’s'' accepted roller and ''fully bonded'' to an acceptable, prepared substrate|| 2021-October-30 }}, and
 +
<li>be reinforced at all inside and outside corners with membrane corner details or seam transition covers
 +
<ol>
 +
<li>wherever the membrane flashing changes planes (vertical to horizontal, for example), and
 +
<li>installed in accordance with the manufacturer’s published instructions,
 +
</li></ol>
 +
<li>wrap onto the outside face of a parapet or roof edge, and extend downward to overlap any cold joint by at least 50.8 mm (2”),
 +
<li>overlap any wall membranes or finishes by at least 50.8 mm (2”), and
 +
<li>underlap any wall membranes or finishes by at least 76.2 mm (3").
 +
</li></ol>
 +
<li>When sheet membrane is carried up a vertical surface more than 609.6 mm (24"), and the membrane will be left exposed to the weather, the membrane {{hilite | shall be mechanically secured to the roof-side face of the ''wall'' at a reasonable interval between the roof field and the upper termination of the membrane.|| 2021-October-22 }}
 +
<li>{{hilite | When mechanical securement of membrane flashing is required, it shall be fastened only on the vertical plane to minimize the possibility of leaks. || 2024-January-31 }}
 +
<li>{{hilite | Low-clearance openings in walls (rough openings less than 203.2 mm (8") in height, measured from the ''finished roof system surface'') are permissible provided they conform to the requirements in [[#10.3.4.5. Doors, Windows, and Wall Openings | Article 10.3.4.5.]])|| 2021-October-30 }}.
 +
<li>{{hilite | The upper termination of sheet membrane installed on the vertical plane must be protected from damage, and from water intrusion, || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | with linear metal flashing installed in keeping with || 2023-June-16 }} [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1., "General Requirements for Linear Metal Flashing"]], or
 +
<li>{{hilite | with a wall finish installed by others. || 2023-June-16 }}
 +
</li></ol>
 +
<li>{{hilite |When sheet membrane flashing is terminated on a vertical surface, it must be secured at its upper termination using|| 2021-October-30 }}
 +
<ol>
 +
<li>{{hilite | '''Option 1''' ({{hilite | '''Figure 10.3.2.3.-A''' || 2025-October-25 }}), in which the upper edges of fully adhered sheet membrane flashing plies shall be protected and secured with overlapping adhered or self-adhered ''wall'' membranes and exterior sheathing|| 2021-October-30 }},
 +
<li>'''Option 2''' ({{hilite | '''Figure 10.3.2.3.-B''' || 2025-October-25 }}), where the upper edges of fully adhered sheet membrane flashing plies must be {{hilite |sealed, and mechanically secured to the wall substrate, with a RoofStar-accepted reinforced liquid membrane flashing (Ref. [[#10.3.3.4. Liquid Membrane Flashing | Article 10.3.3.4., "Liquid Membrane Flashing"]])|| 2021-October-30 }},
 +
<li>{{hilite | '''Option 3''' ({{hilite | '''Figure 10.3.2.3.-C''' || 2025-October-25 }}), where|| 2021-October-30 }}
 +
<ol>
 +
<li>the upper edges of fully adhered sheet membrane flashing plies shall be mechanically secured to the wall with a termination bar,
 +
<li>an acceptable sealant shall be applied along the upper edge of the termination bar,
 +
<li>the sealed termination bar shall be covered with a secondary linear metal counter-flashing installed in a cut reglet (groove), and
 +
<li>an acceptable sealant shall be applied along the upper edge of the cut reglet flashing,
 +
</li></ol>
 +
<li>{{hilite | '''Option 4''' ({{hilite | '''Figure 10.3.2.3.-D''' || 2025-October-25 }}), in which|| 2021-October-30 }}
 +
<ol>
 +
<li>the upper edges of fully adhered sheet membrane flashing plies must be mechanically secure the membrane to the wall with a termination bar or metal flashing,
 +
<li>an acceptable sealant shall be applied along the upper edge of the termination bar or metal flashing,
 +
<li>the sealed termination bar or flashing shall be covered with a secondary "surface reglet" flashing secured against the surface of the wall, and
 +
<li>an acceptable sealant shall be applied along the upper receiving edge of the "surface reglet", or
 +
</li></ol>
 +
<li>{{hilite | '''Option 5''' ({{hilite | '''Figure 10.3.2.3.-E''' || 2025-October-25 }}), in which || 2021-October-30 }}
 +
<ol>
 +
<li>the upper edges of fully adhered sheet membrane flashing plies shall be mechanically secured to the wall with a linear metal counter-flashing ("surface reglet"),
 +
<li>an acceptable sealant shall be applied along the upper edge of the counter-flashing,
 +
<li>the sealed counter-flashing shall be covered with a secondary "surface reglet" flashing secured against the surface of the wall, and
 +
<li>an acceptable sealant shall be applied along the upper receiving edge of the "surface reglet".
 +
</li></ol>
 +
</li></ol>
 +
<li>When sheet membrane turned up the vertical plane is mechanically secured with a termination bar or a metal flashing, fasteners must be spaced no more than 304.8 mm (12”) O.C.
 +
<li>When a second metal flashing is installed to protect a termination bar or flashing used to secure the sheet membrane flashing, it may be fastened no more than 609.6 mm (24”) O.C., provided the ''linear metal flashing'' maintains continuous contact with the substrate.
 +
<li>When closer fastener spacing is required by the ''manufacturer'', the wall must be constructed or modified to facilitate solid fastener securement.
 +
<li>Where a roof allows water to freely drain off the edge, and the roof adjoins a ''wall'', a cricket or diverter should be installed at the roof edge to prevent water intrusion behind ''wall'' finishes.
 +
<li>{{hilite | EIFS walls that must be cut to permit membrane replacement work must be restored with back-wrapped mesh, a base coat, and a finish coat, or with another method that is equal or superior|| 2022-October-22 }}.
 +
</li></ol>
 +
<br>
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:255px;" | {{hilite | '''Figure 10.3.2.3.-A<br>Membrane Termination on Wall<br>Option 1'''<br>Forming Part of<br>Clause 10.3.2.3.(9)(1)(1)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:255px;" | {{hilite | '''Figure 10.3.2.3.-B<br>Membrane Termination on Wall<br>Option 2'''<br>Forming Part of<br>Clause 10.3.2.3.(9)(2)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:255px;" | {{hilite | '''Figure 10.3.2.3.-C<br>Membrane Termination on Wall<br>Option 3'''<br>Forming Part of<br>Clause 10.3.2.3.(9)(3)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:255px;" | {{hilite | '''Figure 10.3.2.3.-D<br>Membrane Termination on Wall<br>Option 4'''<br>Forming Part of<br>Clause 10.3.2.3.(9)(4)<br><small>(Click to expand)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:255px;" | {{hilite | '''Figure 10.3.2.3.-E<br>Membrane Termination on Wall<br>Option 5'''<br>Forming Part of<br>Clause 10.3.2.3.(9)(5)<br><small>(Click to expand)</small> || 2025-October-25 }}
 
|-
 
|-
| [[File:PARS Illustration - Option 2 (SMALL).jpg|class=img-responsive | link=https://rpm.rcabc.org/images/f/f8/PARS_Illustration_-_Option_2_%28SMALL%29.jpg | 400 px |Figure 7.2b]]
+
| [[File:PVC Figure 10.3.2.-A.png | link=https://rpm.rcabc.org/images/4/4c/PVC_Figure_10.3.2.-A.png | 200 px]] || [[File:PVC Figure 10.3.2.-B.png | link=https://rpm.rcabc.org/images/1/1e/PVC_Figure_10.3.2.-B.png | 200 px]] || [[File:PVC Figure 10.3.2.-C.png | link=https://rpm.rcabc.org/images/8/81/PVC_Figure_10.3.2.-C.png | 200 px]] || [[File:PVC Figure 10.3.2.-D.png | link=https://rpm.rcabc.org/images/8/8c/PVC_Figure_10.3.2.-D.png | 200 px]] || [[File:PVC Figure 10.3.2.-E.png | link=https://rpm.rcabc.org/images/b/bd/PVC_Figure_10.3.2.-E.png | 200 px]]
 
|}
 
|}
</div>
+
 
<div class="col-md-3">
+
====10.3.2.4. Protection of Membranes====
{| class="wikitable"; table style="background-color:white"; border="#A9A9A9;"
+
 
|+ <small>Figure 3.1.4.1.-C</small>
+
<ol>
 +
<li>{{hilite | All installed membranes must be protected from splashed or dripped primer (applicable to all trades)|| 2021-October-30 }}.
 +
<li>Membrane flashing must be protected from damage caused by foot traffic, or shifting coverings, using a ''linear metal flashing'' (i.e., base flashing) or other methods acceptable to the '''''Guarantor'''''.
 +
<li>Protection materials shall be installed as required in Article 9.3.2.7.
 +
<li>When an integrity scan is not required because the conditions in Article 1.1.3.3. have been satisfied, the ''Contractor'' shall nevertheless protect installed field membranes and membrane flashing, immediately after installation, with RoofStar-accepted membrane protection materials.
 +
</li></ol>
 +
 
 +
===10.3.3. Additional Requirements for Membrane Flashing===
 +
(The requirements in [[#10.3.2. All Systems | Subsection 10.3.2., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.3.3.1. Reserved====
 +
 
 +
====10.3.3.2. Self-adhered Membranes====
 +
 
 +
<ol>
 +
<li>Self-adhered membranes must be installed on a clean, uncontaminated surface.
 +
<li>{{hilite | All self-adhered membrane that terminates on the vertical plane must be mechanically secured. || 2023-June-16}}
 +
</li></ol>
 +
 
 +
====10.3.3.3. Adhesive-applied and Hot Asphalt-applied Membranes====
 +
 
 +
<ol>
 +
<li>Adhesive-applied and Hot Asphalt-applied Membranes must be installed on a clean, uncontaminated surface.
 +
<li>Hot asphalt-applied sheet membrane installed on a vertical plane must conform to the ''manufacturer's'' installation specifications, using the ''manufacturer's'' accepted asphalt.
 +
<li>Asphalt temperature must conform to the membrane manufacturer's minimum application temperature; a minimum application temperature of 205°C (400°F) is required.
 +
<li>When hot asphalt is used to adhere membrane flashing (stripping), metal base flashing is required on all vertical surfaces, ''walls'', ''curbs'', etc.  (also see Article 13.3.2.4., "Cap, Counter, and Base Flashing")
 +
</li></ol>
 +
 
 +
====10.3.3.4. Liquid Membrane Flashing====
 +
 
 +
<ol>
 +
<li>{{hilite | Liquid membrane flashing systems described in this Article may be used only when approved by the ''manufacturer''. || 2023-June-16 }}
 +
<li>Two-component fleece-reinforced catalyzed polymethyl methacrylate (PMMA) and polyurethane methyl methacrylate (PUMA) liquid membrane flashing systems must be accepted by the '''''Guarantor''''' and listed in [[Division_C | Division C]], and
 +
<ol>
 +
<li>may be used
 +
<ol>
 +
<li>{{hilite | on the ''drainage plane''|| 2021-February-7 }},
 +
<li>where sheet membrane flashing may not be practical or even possible,
 +
<li>{{hilite | to terminate the top edge|| 2021-February-7 }} of sheet membrane flashing,
 +
<li>{{hilite | for sheet membrane reinforcement (i.e., at corners)|| 2021-February-7 }},
 +
<li>{{hilite | where abrasion resistance is desirable|| 2021-February-7 }},
 +
<li>{{hilite | where resistance to sheet membrane contamination is necessary|| 2021-February-7 }}, or
 +
<li>{{hilite | where the ''Design Authority'' specifies its application. || 2023-June-16 }}
 +
</ol></li>
 +
<li>must be compatible with the primary sheet membrane flashing.
 +
</ol></li>
 +
<li>For all applications,
 +
<ol>
 +
<li>the substrate must be clean, dry, free of contaminants, and primed, as directed by the flashing system manufacturer,
 +
<li>a base layer of catalyzed liquid membrane resin must be applied within the area masked for coverage,
 +
<li>the base coating must be reinforced with the manufacturer’s fleece, cut to size so that the fleece is set in from the masked area no more than 3.78 mm (1/8”),
 +
<li>the fleece must be fully saturated with liquid, following the published instructions from the ''manufacturer'', and
 +
<li>the embedded fleece must be coated with a second application of catalyzed liquid membrane resin, covering the masked area.
 +
</ol></li>
 +
<li>On vertical sheet membrane terminations, the liquid membrane flashing system shall provide no less than 50.8 mm (2") coverage, both above and below the sheet membrane termination.
 +
<li>Application rates and guidelines issued by the manufacturer of the liquid flashing product must be followed, unless superseded by these requirements (Ref. Figure 12.3.2.-A).
 +
<li>Where a fleece-reinforced 2-component catalyzed polymethyl methacrylate (PMMA) or polyurethane methyl methacrylate (PUMA) liquid membrane flashing system serves as a substitute for sheet membrane flashing, the reinforced liquid membrane flashing system must extend at least 203.2 mm (8”) up the vertical plane, and no less than 203.2 mm (8") onto the horizontal field plane.
 +
<li>When a granule surface or textured finish is specified, the granules or texturing material must be broadcast into a third coat.
 +
</ol></li>
 +
 
 +
==={{hilite | 10.3.4. Perimeter Details, High Walls, and Openings|| 2021-October-30 }}===
 +
(The requirements in [[#10.3.2. All Systems | Subsection 10.3.2., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.3.4.1. Parapets====
 +
 
 +
<ol>
 +
<li>All {{hilite | ''standard parapets'' || 2023-October-28 }}{{strike| , regardless of their height, must be sealed with waterproofing membrane || 2022-October-28 }} {{hilite | (609.6 mm (24”) or less in height) || 2023-October-28 }}
 +
<ol>
 +
<li>{{hilite | must be completely waterproofed with membrane or membrane flashing conforming to the minimum requirements in || 2023-October-28 }} [[#9.2.1.1. Membrane Composition, Thickness, and Selection | Article 9.2.1.1.]] {{hilite | and installed to conform to || 2023-October-28 }} [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]], and
 +
<li>{{hilite | shall be waterproofed with sheet membrane || 2023-October-28 }}
 +
<ol>
 +
<li>applied to the roof-side face of the ''parapet'', extending from the roof field to a point at least 203.2 mm (8”) above the ''finished roof system surface'', and
 +
<li>applied to the sloped top and exterior faces.
 +
</li></ol>
 +
</li></ol>
 +
<li>{{hilite | Membrane applied to ''parapet'' walls must be ''fully bonded'' to the entire surface of the ''parapet'' (Ref. || 2024-January-31 }} [[#13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.3.2.3.(4)]]).
 +
<li>{{hilite | Coping that is part of the ''roof system'' must be continuously waterproofed as part of the ''roof system'', even if the coping is flashed separately from the ''parapet wall''. || 2024-January-31 }}
 +
<li>{{hilite | All membrane bonded to a ''parapet'' coping shall continue over the top and extend down the outside face of the coping, overlapping any joint at least 50.8 mm (2”). || 2024-January-31 }}
 +
<li>{{strike| ''Tall parapets'' || 2022-October-28 }} {{hilite | A ''tall parapet'' (taller than 609.6 mm (24”)) || 2023-October-28 }} {{hilite | shall be waterproofed || 2023-October-28 }} in keeping with the requirements in Article [[#10.3.4.3. Tall Parapets | Article 10.3.4.3.]]).
 +
<li>Where a ''parapet'' intersects with a higher wall, water must be directed to the outer surface of the ''wall'' by flashing the union with
 +
<ol>
 +
<li>PVC sheet membrane flashing,
 +
<li>PVC reinforcement patches, and
 +
<li>a metal saddle assembly.
 +
</li></ol>
 +
<li>{{hilite | When a ''parapet'' is capped with a pre-cast concrete or stone coping, || 2024-June-21 }}
 +
<ol>
 +
<li>{{hilite | the membrane over the top of the ''parapet'' must be drilled by others to receive dowels, || 2024-June-15 }}
 +
<li>{{hilite | the dowels must be installed by others, and || 2024-June-15 }}
 +
<li>{{hilite | the dowels must be sealed by the ''Contractor'', following the requirements in || 2024-June-15 }} [[#14.3.2.7. Structures and Equipment | Article 14.3.2.7.]]{{hilite | , Sentences 6 and 7, for sealing dowels installed in pre-curbs. || 2024-June-15 }}
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====10.3.4.2. Low Profile Edges====
 +
 
 +
<ol>
 +
<li>Metal edge flashings must be
 +
<ol>
 +
<li>supported over a solid substrate,
 +
<li>installed after application of the field membrane, which {{hilite |must wrap onto the outside face of the roof edge and extend downward to overlap any cold joint by at least 50.8 mm (2”)|| 2021-October-30 }},
 +
<li>seated in water cut-off sealant applied to the top of the installed field membrane,
 +
<li>fastened to the roof structure with mechanical fasteners spaced 203.2 mm (8”) O.C. in offsetting rows, (Ref. [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1.]]),
 +
<li>joined to each other with lap joints measuring at least 101.6 mm (4”), each joint sealed with butyl or gunnable sealant,
 +
<li>cleaned and prepared to receive membrane,
 +
<li>primed with the ''manufacturer's'' accepted primer, unless specified otherwise by the ''manufacturer'', and
 +
<li>covered with membrane flashing
 +
<ol>
 +
<li>matching the composition of the membrane used in the field,
 +
<li>adhered to the flange with the ''manufacturer's'' proprietary adhesive,
 +
<li>extending at least 101.6 mm (4") onto the metal flashing, and at least 50.8 mm (2”) past the fasteners,
 +
<li>extending at least 152.4 mm (6”) onto the field membrane,
 +
<li>heat-welded around the perimeter to conform to standard seam requirements (Ref. [[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]]), and
 +
<li>sealed around all edges with the ''manufacturer's'' cut-edge sealant.
 +
</li></ol>
 +
</li></ol>
 +
<li>Existing and new canted edges must be
 +
<ol>
 +
<li>made of wood, and
 +
<li>flashed with sheet membrane in keeping with the requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]]
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====10.3.4.3. {{hilite | Tall Parapets || 2024-January-31 }}====
 +
 
 +
<ol>
 +
<li>Sheet membranes installed on a {{strike| "High Wall" || 2023-January-26 }} {{hilite | ''tall parapet'', above the termination of primary roof membrane flashing, || 2024-January-31 }}
 +
<ol>
 +
<li>shall conform to the {{hilite | material || 2024-January-31 }} {{strike| general || 2023-January-26 }} requirements in [[#10.2.1.1. Flashing Membranes | Article 10.2.1.1.]],
 +
<li>must be applied with the methodology prescribed by the ''manufacturer'',
 +
<li>shall positively overlap the primary sheet membrane flashing by at least 50.8 mm (2”),
 +
<li>shall underlap the roof sheet membrane flashing installed to cover the top of a parapet by at least 50.8 mm (2"),
 +
<li>{{hilite | may be used to waterproof the coping of a ''tall parapet'' || 2024-January-31 }} {{strike| shall not be used to cover the top surface of a ''parapet'' || 2023-January-26 }}, and
 +
<li>shall be protected from UV radiation with a metal flashing, cladding or another wall covering.
 +
</li></ol>
 +
<li>{{hilite | The application of membrane over the coping of a ''tall parapet'' shall conform to the ''manufacturer’s'' prescribed methodologies but may be installed parallel to the long axis of the ''parapet'' as permitted in || 2024-January-31 }} [[#10.3.4.1. Parapets | Article 10.3.4.1.(2)]] {{hilite | for a ''standard parapet'', provided the conditions therein are satisfied. || 2024-January-31 }}
 +
</li></ol>
 +
{{strike| Roofing sheet membranes installed on a  "High Wall" shall conform to the general requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]] || 2023-January-26 }}
 +
{{strike| Where a "High Wall" is included in the ''Contractor's'' scope of work (Ref. [[#10.1.4.3. Tall Parapets | Article 10.1.4.3.]]), waterproofing the "High Wall" must conform to the ''manufacturer's'' published requirements, and to [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]] || 2023-January-26 }}
 +
 
 +
====10.3.4.4. Reserved====
 +
====10.3.4.5. Doors, Windows, and Wall Openings====
 +
(Ref. Construction Detail [[SBS Low Door Opening | "Low Door Opening"]])
 +
 
 +
<ol>
 +
<li>Rough openings formed or framed in walls to accommodate doors, windows, curtain-wall assemblies, or other penetrations (i.e., ventilation grilles), must be waterproofed before the door, window, curtain-wall, or another assembly is installed.
 +
<li>{{hilite | All rough openings must be suitable for the application of sheet membrane flashing or reinforced liquid membrane flashing systems, and any work to render surfaces suitable shall be performed by others. || 2023-June-16 }}
 +
<li>{{hilite | Low-clearance openings (rough openings less than 203.2 mm (8") in height, measured from the ''finished roof system surface'') must be flashed using methods described in this Article; curtain-wall openings may be flashed using a modified ''metal water-stop flashing'' method by eliminating the water-stop flashing, provided the remaining required work is executed by the ''Contractor''. || 2023-June-16 }}
 +
<li>{{hilite | Membranes used for this application must conform to the material requirements in || 2023-June-16 }} [[#10.2.1.1. Flashing Membranes | Article 10.2.1.1., "Flashing Membranes"]].
 +
<li>{{hilite | In all methods described in this Article, low-clearance openings must be pre-flashed with membrane || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | lapped over the field membrane in keeping with requirements found elsewhere in this Part, || 2023-June-16 }}
 +
<li>{{hilite | carried over the top face of the rough opening, || 2023-June-16 }} and
 +
<li>{{hilite | carried vertically above the sill, at least 101.6 mm (4"). || 2023-June-16 }}
 +
</li></ol>
 +
<li>{{hilite | Regardless of the method described below, the membrane installed over the rough opening sill must be protected from abrasion damage with || 2025-October-25 }}
 +
<ol>
 +
<li>{{hilite | a full-coverage pre-manufactured threshold step (by others) || 2025-October-25 }},
 +
<li>{{hilite | a full-coverage metal flashing, supplied and installed by the ''Contractor'', or || 2025-October-25 }}
 +
<li>{{hilite | fleece-reinforced PMMA, coated with an abrasion-resistant coating proprietary to the PMMA ''manufacturer'' || 2025-October-25 }}.
 +
</li></ol>
 +
<li>{{hilite |When the '''metal water-stop flashing''' method is specified,|| 2022-February-5}}
 +
<ol>
 +
<li>{{hilite | all corners must be reinforced with compatible membrane patches or covers, and|| 2022-February-5 }}.
 +
<li>{{hilite | the metal water-stop flashing must be|| 2022-February-5}}
 +
<ol>
 +
<li>{{hilite | fabricated to fit the full width of the opening,|| 2022-February-5}}
 +
<li>{{hilite | fashioned with a water dam upstand measuring at least 25.4 mm (1”) in height|| 2022-February-5}},
 +
<li>installed over the sill membrane,
 +
<li>embedded in a membrane-compatible mastic or sealant,
 +
<li>mechanically attached to the sill, and
 +
<li>{{hilite | sealed to the rough opening with an additional ply of membrane flashing|| 2022-February-5}}.
 +
</li></ol>
 +
</li></ol>
 +
<li>{{hilite |When the '''metal sill-pan flashing method''' is specified, a single-piece metal pan sill flashing must be|| 2022-February-5}}
 +
<ol>
 +
<li>{{hilite |fabricated to fit snugly inside the rough opening,|| 2022-February-5}}
 +
<li>{{hilite |folded, welded, or soldered in the corners, || 2022-February-5}}
 +
<li>{{hilite |fashioned with a water dam upstand measuring at least 25.4 mm (1”) in height,|| 2022-February-5}}
 +
<li>{{hilite |fabricated with 101.6 mm (4”) high flanges that cover the insides of the rough opening and wrap around the outside face of the wall at least 101.6 mm (4”),|| 2022-February-5}}
 +
<li>{{hilite |installed over the pre-flashing membrane and embedded in a membrane-compatible mastic or sealant,|| 2022-February-5}}
 +
<li>{{hilite |mechanically attached to both the outside and inside faces of the rough door opening, and|| 2022-February-5}}
 +
<li>{{hilite |sealed to the rough opening with an additional ply or coating of membrane flashing.|| 2022-February-5}}
 +
</li></ol>
 +
<li>{{hilite | When clearances preclude the use of either the ''metal water-stop flashing'' method or the ''metal sill-pan flashing'' method, the rough opening may be flashed using the ''reinforced liquid membrane flashing''.|| 2022-February-5}}
 +
<li>{{hilite |When a '''reinforced liquid membrane flashing method''' is specified,|| 2022-February-5}}
 +
<ol>
 +
<li>{{hilite |the rough opening must be flashed using the metal water-stop method,|| 2022-February-5}}
 +
<li>{{hilite |the metal water-stop flashing must be sealed to the pre-flashing membrane using an accepted liquid membrane flashing system,|| 2022-February-5}}
 +
<li>{{hilite |the inside faces of the rough opening must be flashed with reinforced liquid membrane flashing, ensuring an overlap with the membrane on the sill at least 50.8 mm (2”),|| 2022-February-5}}
 +
<li>liquid membrane flashing must extend up the inside faces of the rough opening at least 101.6 mm (4”), and
 +
<li>{{hilite |the liquid membrane flashing system must be applied following the requirements in [[#10.3.3.4. Liquid Membrane Flashing | Article 10.3.3.4.]]|| 2022-February-5}}
 +
</li></ol>
 +
<li>''Overflow drains'' must
 +
<ol>
 +
<li>be installed on the roof area adjacent any rough low-clearance opening,
 +
<li>be located at least 25.4 mm (1") below a rough low-clearance opening, and
 +
<li>conform to the spacing and capacities required by the "National Plumbing Code of Canada", Division B, [https://nrc-publications.canada.ca/eng/view/ft/?id=6e7cabf5-d83e-4efd-9a1c-6515fc7cdc71#%5B%7B%22num%22%3A310%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2Cnull%2C250%2Cnull%5D Article 2.4.10.4.] (See also [[#11.1.3.1. Principles of Design | Article 11.1.3.1., "Principles of Design"]]).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===10.3.5. Reserved===
 +
===10.3.6. Expansion and Control Joints===
 +
(The requirements in [[#10.3.2. All Systems | Subsection 10.3.2., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.3.6.1. Expansion Joints====
 +
 
 +
<ol>
 +
<li>''Expansion joints'', which are {{hilite | framed and sheathed || 2024-October-20 }} {{strike| constructed || 2023-October-26 }} by others, must be
 +
<ol>
 +
<li>sloped toward the roof surface on the top face of each side,
 +
<li>waterproofed as shown in Construction Detail [[SBS Expansion Joint (Field) | "Expansion Joint (Field)"]], with methods and materials conforming to the requirements in [[#9.3.2.3. General Requirements for Membrane Application | Article 9.3.2.3.]], and with the ''manufacturer’s'' published specifications for the detail, and
 +
{{strike| <li>covered with a membrane underlay, and || 2023-October-26 }}
 +
<li>covered with 2-part ''linear metal flashings'' (counter-flashing and cap flashing) that permit multi-directional movement in the joint.
 +
</li></ol>
 +
{{strike| <li>{{hilite | The supply and installation of the ''expansion joint'' assembly or system is the responsibility of others, unless specified otherwise. || 2023-June-16 }} || 2023-October-26 }}
 +
<li>When proprietary elastomeric ''expansion joint'' systems are specified, the bond between the sheet membrane flashing and th''e expansion joint'' system must be acceptable to both the ''manufacturer'' and the supplier of the ''expansion joint'' system (Ref. [[#10.1.6.1. Expansion Joints | Article 10.1.6.1.]] for design requirements).
 +
<li>Field splicing of proprietary elastomeric ''expansion joints'' is permissible only when made with a machine acceptable to the ''expansion joint'' manufacturer.
 +
</li></ol>
 +
 
 +
====10.3.6.2. Control Joints (Roof Dividers)====
 +
 
 +
<ol>
 +
<li>''Control joints'' must be waterproofed in keeping the requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]], together with the ''manufacturer’s'' published specifications for the detail.
 +
</li></ol>
 +
 
 +
===10.3.7. Intersections with Other Roof Systems===
 +
(The requirements in [[#10.3.2. All Systems | Subsection 10.3.2., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====10.3.7.1. Compatibility of Materials====
 +
 
 +
<ol>
 +
<li>Where two ''roof systems'' intersect, materials must be compatible with each other, or must be separated from contact by an intermediate separation layer.
 +
</li></ol>
 +
 
 +
====10.3.7.2. Intersections with Water-Shedding Roofs====
 +
(See [[Notes to PVC Standard#A-10.3.7.2. | {{hilite | Note A-10.3.7.2. || 2025-October-25 }}]])
 +
 
 +
<ol>
 +
<li>When a ''waterproofing roof system'' transitions <u>down a slope</u> onto a lower ''water-shedding roof system'', the waterproofing membrane must lap over the ''water-shedding roof system'' by no less than 50.8 mm (2").
 +
<li>When a ''waterproofing roof system'' transitions <u>up a slope</u> and underlaps a ''water-shedding roof system'',
 +
<ol>
 +
<li>sheet membrane flashing must extend up the ''water-shedding roof system'' slope <u>at least</u>
 +
<ol>
 +
<li>152.4 mm (6”), plus {{hilite | at least || 2025-October-25 }} 76.2 mm (3”) for the overlap by the ''water-shedding roof system'', when measured vertically <u>from the maximum water level</u>,
 +
{{strike| <li>203.2 mm (8”), plus 76.2 mm (3”) for the overlap by the ''water-shedding roof system'', when measured vertically <u>from the ''drainage plane''</u>, || 2024-October-29 }} and
 +
<li>304.8 mm (12”) plus {{hilite | at least || 2025-October-25 }} 76.2 mm (3”) for the overlap by the ''water-shedding roof system'', when measured vertically <u>from the {{strike| ''drainage plane'' or || 2024-October-29 }} maximum water level, in regions with typical heavy snow</u>,
 +
</li></ol>
 +
<li>the termination of the ''waterproofing roof system'' sheet membrane flashing on the slope must be mechanically secured, separately from the ''water-shedding roof system'', and
 +
<li>the overlapping of adjoining ''roof system'' materials must conform to the requirements for the specific ''water-shedding roof system''.
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====10.3.7.3. Intersections with Membrane Gutters====
 +
 
 +
<ol>
 +
<li>Refer to the requirements in [[#11.3.3.8. Membrane Gutters | Article 11.3.3.8.]]
 +
</li></ol>
 +
 
 +
===10.3.8. Reserved===
 +
 
 +
<hr>
 +
 
 +
<div id=PART_11></div>
 +
 
 +
=Part 11 - Drainage=
 +
==Section 11.1. Design==
 +
===11.1.1. General===
 +
====11.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====11.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>''Drain leader'' means "a pipe that is installed to carry ''storm water'' from a roof to a ''storm building drain'' or ''sewer'' or other place of disposal” ("British Columbia Plumbing Code", Division A, [https://free.bcpublications.ca/civix/document/id/public/bcpc2018/bcpc_2018dap1s14 Article 1.4.1.2., "Defined Terms"]).
 +
<li>''Flanged insert drain'' means a ''primary roof drain''
 +
<ol>
 +
<li>with a flat, broad flange that encircles, and is manufactured from the same material as, the drain opening or bowl,
 +
<li>that is spun or hot-welded (not cast),
 +
<li>that typically is secured to the ''roof assembly'' with screw-type mechanical fasteners, and
 +
<li>that is manufactured with a short length of drain pipe ("drain stem"), which is inserted into a drain leader and sealed against back-flow using a compression seal.
 +
</li></ol>
 +
<li>''Overflow drain'' ("overflow") means a ''secondary roof drain''
 +
<ol>
 +
<li>that serves as a safeguard when roof drains fail, and 
 +
<li>{{hilite |which may be located in the roof field (for example, as a secondary drain) or at the perimeter of the roof.|| 2020-July-3 }}
 +
</li></ol>
 +
<li>''Primary roof drain'' means the primary means of draining water from the roof.
 +
<li>''Roof drain'' means “A fitting or device that is installed in the roof to permit storm water to discharge into a ''leader''.” ("British Columbia Plumbing Code", Division A, [https://free.bcpublications.ca/civix/document/id/public/bcpc2018/bcpc_2018dap1s14 Article 1.4.1.2., "Defined Terms"]).
 +
<li>''Scupper drain'' ("Scupper") means an open or closed roof drain that conveys water laterally from one roof area to another, or from the roof directly to the exterior of the building.
 +
<li>''Secondary roof drain'' means a drain connected to a separate drainage system, typically situated at a higher elevation than a ''primary roof drain''.  An ''overflow drain'' is a type of ''secondary roof drain''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===11.1.2. Guarantee Term Requirements===
 +
====11.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====11.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>{{hilite | incorporate ''overflow drains'', designed for all roof areas, that are properly sized and spaced, in keeping with the building and plumbing codes having jurisdiction || 2020-October-22 }},
 +
<li>incorporate only drains and ''overflows'' designed and equipped with clamping rings, and
 +
<li>{{hilite | specify securement of the roof membrane with drain clamping rings or, when permitted by the ''manufacturer'', a reinforced <u>2-component</u> liquid membrane flashing, which must conform to the material and application requirements in this Standard|| 2020-October-22 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 11.1.2.3. RoofStar Vegetated Roof Guarantee || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the supporting ''roof assembly'' shall
 +
<ol>
 +
<li>comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''',
 +
<li>be acceptable to the manufacturer as support for a ''vegetated roof system'', and
 +
<li>comply with the related requirements in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”].
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===11.1.3. All Systems===
 +
====11.1.3.1. Principles of Design====
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' is responsible for the design of roof drainage {{hilite | and ''continuity'' of ''control layers'', where these intersect with any part of the designed roof drainage system (Ref. || 2024-June-15 }} [[#3.1.5.1. Securement against Specified Wind Loads | Article 3.1.5.1.]]; {{hilite | also see || 2024-June-15 }} [[#6.1.3.2. Continuity of Control Layers | Article 6.1.3.2.]]).
 +
<li>{{hilite |The size (flow rate) of roof drains and ''overflows'' must be determined using the "British Columbia Building Code" and "British Columbia Plumbing Code", with attention given to both average and large rainfall events (for rainfall capacities, refer to the|| 2021-October-30 }} [https://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbacr2 "British Columbia Building Code", Div. B, Appendix C, "Table C-2"], {{hilite |which lists rainfall loads using specific reference locations throughout the province|| 2021-October-30 }}.
 +
<li>Membrane gutters must be designed for their anticipated capacity, with consideration given to
 +
<ol>
 +
<li>rainfall and snow load calculations for the building location,
 +
<li>drain type, size, flow rate, and
 +
<li>size and placement of the ''overflow drain''.
 +
</ol></li>
 +
<li><span class="recommended">{{hilite |The ''Design Authority'' should coordinate the various disciplines (including, without limitation, mechanical (plumbing) and structural engineers) to calculate proper flow rates, head pressure, and structural supports, in anticipation of significant, short-duration rain events; consideration should be given to various design elements</span> (listed without limitation) || 2021-October-23 }}</span>
 +
<ol>
 +
<li><span class="recommended">roof slope (more slope theoretically increases drainage and lessens live loading from rainfall)</span> (Ref. [[#2.1.3.1. General Requirements for Roof Slope | Article 2.1.3.1., "General Requirements for Roof Slope"]]),
 +
<li><span class="recommended">rainfall rates for primary and overflow drainage</span>,
 +
<li><span class="recommended">''primary'' and ''overflow drain'' capacities</span>,
 +
<li><span class="recommended">hydraulic head (pressure)</span>, and
 +
<li><span class="recommended">{{hilite | the location of the ''drainage plane''|| 2021-October-30 }}</span> {{hilite | (the ''drainage plane'' is not necessarily the same as the|| 2021-October-30 }} ''finished roof system surface'', {{hilite | and the location of the ''drainage plane'' may affect the determination of live loads, which should be accounted for as part of drainage design|| 2021-October-30 }}).
 +
</li></ol>
 +
<li>Roofs may drain off a roof edge, or by means of internal plumbing (both are permissible under the '''''RoofStar Guarantee Program''''').
 +
<li>When a roof is designed to drain off an edge, water may drain freely or be collected by means of an external or membrane gutter (See [[#11.1.4.3. Membrane Gutters | Article 11.1.4.3.]]) and drained onto a lower ''roof assembly''.
 +
<li>The membrane of the lower roof onto which drain water is directed must be protected from abrasion with splash pads.
 +
<li><span class="principles">{{hilite | Roof drains should be situated in a depression, to compensate for the build-up of membrane at the edge of the drain ''assembly'', which may impede drainage. || 2023-June-16 }}</span>
 +
<li><span class="recommended">When roofs are designed to drain through internal plumbing, drain sumps should be</span>
 +
<ol>
 +
<li><span class="recommended">incorporated into a roof design whenever possible, to increase head pressure above primary roof drains,</span>
 +
<li><span class="recommended">designed at least 1m x 1m (39” x 39”) in size</span> (The depth of a sump is a function of insulation thickness; See [[#7.1.4.4. Insulating Drain Sumps | Article 7.1.4.4.]]),
 +
<li><span class="recommended">designed with sloped insulation</span>, and
 +
<li><span class="recommended">additionally reinforced around the perimeter using a reinforced 2-component liquid membrane flashing system, to enhance durability.
 +
</li></ol>
 +
<li>All drains located at the level of the field membrane must be fully supported above the ''supporting deck structure''.
 +
<li>When a roof is fully or partially replaced, all flanged drains, ''scuppers'', and ''overflows'', together with internal drain-to-pipe compression seals, and seals exposed to water or ultraviolet light, must be replaced.
 +
<li><span class="principles">If a flow {{hilite | control || 2025-October-25 }} {{strike| restrictor || 2024-October-29 }} is present in an existing cast drain leader, the {{hilite | flow control || 2025-October-25 }} {{strike| restrictor || 2024-October-29 }} should be reinstalled</span>.
 +
<li>Roofs that support ''overburden'', and roofs that are secured with ballast, must be designed to incorporate a ballast guard that surrounds the drain and promotes proper drainage.
 +
<li>{{hilite | Roofs designed to support a ''vegetated roof system'' covered by a '''''RoofStar Vegetated Roof Guarantee''''' must design the drainage system, including ''roof drain'' protection measures, in coordination with the “RGC Standard for Vegetated Roofs” (Note that if an existing roof incorporates flow control drains , reinstating them as part of a roof replacement ''project'' may adversely affect the viability a ''vegetated roof system'', thereby necessitating a wider redesign of roof drainage.)(See [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.3.2._Permitted_Vegetated_Roof_Systems Sentence  1.1.3.2.(9)], “RGC Standard for Vegetated Roofs”; also see || 2025-October-25 }} [[#11.3.3.2. General Requirements for Cast-iron Roof Drains | Article 11.3.3.2.]]).
 +
</li></ol>
 +
 
 +
====11.1.3.2. Roof Drain Function and Location====
 +
 
 +
<ol>
 +
<li>''Roof drains'' must be used only for draining water.
 +
<li>''Roof drains'' on new construction ''projects'' must be located at least {{hilite | 457.2 mm (18") || 2024-June-15 }} {{strike| 304.8 mm (12”) || 2023-June-15 }} away from any adjacent drain, penetration, upstand, edge, or wall (the separation space is measured between openings, excluding the flange), but this requirement does not apply to ''overflow drains'', ''scupper drains'', and membrane gutters (Ref. [[#11.3.3.7. Scuppers and Overflows | Article 11.3.3.7.]] for minimum requirements applicable to ''scuppers'' and ''overflows'').
 +
<li>{{hilite | Notwithstanding the requirements in Sentence (1), a cast iron ''roof drain'' with a sump receiver must be placed well away from any interference with drain securement. || 2024-June-15 }}
 +
<li>When {{hilite | a roof is replaced and || 2024-June-15 }} existing ''roof drain'' {{strike| and penetration locations || 2023-June-15 }} do not comply with the spacing requirements in this Part, the ''Design Authority'' must submit {{strike| a written request for a Variance, following the requirements in [[#1.1.3.6. Variances | Article 1.1.3.6., "Variances"]] || 2023-June-15 }}{{hilite | a drawn detail for a review by the '''''Guarantor'''''; the detail must incorporate the following requirements and principles, together with requirements in Subsection 11.3.3 || 2024-June-15 }}:
 +
<ol>
 +
<li><span class="principles">{{hilite | Specify sheet membrane flashing to seal in the drain to the field membrane (liquid membranes should be the last option) || 2024-June-15 }}</span>.
 +
<li>{{hilite | The membrane target patch properties, dimensions, and installation must conform to the requirements published in Subsection 11.3.3., || 2024-June-15 }} <span class="principles">{{hilite | but when it is not possible to seal the target patch in the horizontal plane (because of interference, for example by a wall or curb), the target patch membrane may be turned up a vertical surface, provided it extends past the edge of the drain flange (insert-type drain) or clamping ring (cast drain) at least 152.4 mm (6”) || 2024-June-15 }}</span>.
 +
<li>{{hilite | The flange on insert drains may not be trimmed || 2024-June-15 }}.
 +
<li><span class="principles">{{hilite | When a drain flange of an insert-type ''roof drain'' must be folded to conform to a wall or curb, specify the use an appropriate tool to bend the flange, to ensure the flange makes full contact with the supporting membrane || 2024-June-15 }}</span>.
 +
<li>{{hilite | Wall membrane flashings must not terminate under the clamping ring of a cast drain || 2024-June-15 }}.
 +
<li>{{hilite | The clamping ring of a cast drain must be fully seated to ensure the drain will function properly || 2024-June-15 }}.
 +
</ol></li>
 +
</ol></li>
 +
 
 +
===11.1.4. Drains and Membrane Gutters===
 +
(The requirements for [[#11.1.3. All Systems | Subsection 11.1.3., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====11.1.4.1. Cast-iron Roof Drains====
 +
 
 +
<ol>
 +
<li>Only cast-iron roof drains, and existing external couplers used to connect drains to leaders, may be re-used for roof replacement ''projects''.
 +
<li><span class="principles">Drain extensions for cast-iron roof drains should be avoided, since the connection with the cast drain is not sealed; the result is a leak into the ''roof system''</span>.
 +
</li></ol>
 +
 
 +
====11.1.4.2. Scuppers and Overflows====
 +
(See [[Notes to PVC Standard#A-11.1.4.2. | Note A-11.1.4.2.]])
 +
 
 +
<ol>
 +
<li><span class="principles">A scupper drain may serve either as a ''primary roof drain'' or as a ''secondary drain''</span>.
 +
<li><span class="principles">Where no ''overflows'' are specified, the building structure should be designed to carry the total load of water collected on the roof, in the event of ''primary roof drain'' failure.
 +
<li>''Overflows'' must be
 +
<ol>
 +
<li>designed as open-wall scuppers for ''parapets'' measuring 152.4 mm (6”) or less in height (Ref. Construction Detail [[SBS Open-wall Scupper Drain | "Open-wall Scupper Drain"]]), or
 +
<li>designed around the principles of a through-wall scupper when ''parapets'' are higher than 152.4 mm (6”) (Ref. Construction Detail [[SBS Through-wall Scupper Drain  | "Through-wall Scupper Drain"]]), and (irrespective of design) shall be
 +
<ol>
 +
<li>located no higher than 101.6 mm (4”) above the ''drainage plane'',
 +
<li>installed at least 25.4 mm (1”) lower than the lowest elevation of a door, window, or other low-clearance opening, to prevent water intrusion,
 +
<li>situated so that they freely and visibly discharge storm water,
 +
<li>protected with a ballast guard when the overflow is located below the ''finished roof system surface'', and
 +
<li>specified to conform to the spacing and capacities required by the "National Plumbing Code of Canada", Division B, [https://nrc-publications.canada.ca/eng/view/ft/?id=6e7cabf5-d83e-4efd-9a1c-6515fc7cdc71#%5B%7B%22num%22%3A310%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2Cnull%2C250%2Cnull%5D Article 2.4.10.4.] (See also [[#11.1.3.1. Principles of Design | Article 11.1.3.1., "Principles of Design"]]).
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===={{hilite | 11.1.4.4. Drains in Planters || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Drains designed for structural planters must conform to the requirements in [https://rpm.rcabc.org/index.php?title=VRA_Standard#6.1.3.2._Planter_Drainage Article 6.1.3.2.] of the “RGC Standard for Vegetated Roofs”.
 +
</ol></li>
 +
 
 +
====11.1.4.3. Membrane Gutters====
 +
(See [[Notes to PVC Standard#A-11.1.4.3. | Note A-11.1.4.3.]])
 +
 
 +
<ol>
 +
<li>A '''''RoofStar Guarantee''''' may cover a membrane ''gutter'' only when the membrane ''gutter'' and the adjoining roof area are part of the same scope of work {{hilite | (''gutters'' lined with an adhered membrane and typically integrated into the roof structure). || 2023-June-16 }}
 +
<li>{{hilite | The ''Design Authority'' is responsible to design the membrane ''gutter'' for its anticipated capacity, with consideration given to|| 2020-July-3 }}
 +
<ol>
 +
<li>{{hilite | rainfall and snow load calculations for the building location|| 2020-July-3 }},
 +
<li>{{hilite | drain type, size, and flow rate|| 2020-July-3 }}, and
 +
<li>{{hilite | size and placement of the ''overflow drain''|| 2020-July-3 }}.
 +
</li></ol>
 +
<li>New membrane ''gutters'' shall be designed with a minimum width of 304.8 mm (12”) and a depth not exceeding the ''gutter’s'' width.
 +
<li>At least 101.6 mm (4") clearance on the horizontal plane is required between any membrane ''gutter'' wall and the
 +
<ol>
 +
<li>the edge of the drain bowl for spun drains, and
 +
<li>the edge of the drain leader for flat spun or welded drains.
 +
</ol></li>
 +
<li>Only fully-adhered membranes may be used in membrane ''gutters''.
 +
<li>Metal ''gutter'' liners are permissible, provided they are designed to fit over acceptable waterproofing, and the liners conform to the material requirements in [[#11.2.1.3. Membrane Gutters and Gutter Liners | Article 11.2.1.3.]]
 +
<li>''Conventionally insulated systems'' that drain into a membrane ''gutter'' must abut solid blocking at the ''gutter'' edge, which provides
 +
<ol>
 +
<li>a stop for the insulation ''assembly'', and
 +
<li>a solid substrate for the securement of flashings and membranes.
 +
</ol></li>
 +
<li>An ''overflow drain'' must be located at least
 +
<ol>
 +
<li>101.6 mm (4”) above the primary membrane ''gutter'' drain, and
 +
<li>25.4 mm (1”) below any mechanical fasteners used to secure the adjoining ''roof system''.
 +
</ol></li>
 +
<li>In roof replacement applications, existing membrane ''gutters'' may qualify for a '''''RoofStar Guarantee''''', but should be redesigned if their capacity is undersized, and must incorporate an overflow drain in keeping with the requirements in this Part.
 +
<li>Where the primary drain in an existing membrane ''gutter'' is undersized for its capacity, the primary drain must be replaced with one that is properly sized.
 +
<li> When a membrane ''gutter'' adjoins a RoofStar-guaranteed ''water-shedding system'', the transition from gutter to ''roof system'' shall conform to [[#11.3.3.8. Membrane Gutters | Article 11.3.3.8.]]
 +
</ol></li>
 +
 
 +
==Section 11.2. Materials==
 +
(See [[Division_C | Division C, "Accepted Materials"]])
 +
 
 +
===11.2.1. Material Properties===
 +
====11.2.1.1. General Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | Except for cast-iron roof drains, which are usually supplied and installed by others, only new drains and penetration flashings listed in [[Division_C | Division C]] may be used.
 +
<li>Reuse of any penetration flashing or drain (except serviceable cast iron drains) is prohibited and may void the ''Guarantee'' (See Division A, [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Article 3.2.1.2.]])|| 2021-February-5 }}.
 +
<li>Sheet membranes used to flash (strip in) drains must conform to the membrane requirements found in [[#9.2.1.1. Membrane Composition, Thickness, and Selection | Article 9.2.1.1.]]
 +
</li></ol>
 +
 
 +
====11.2.1.2. Roof Drains and Scuppers====
 +
(See [[Notes to PVC Standard#A-11.2.1.2. | Note A-11.2.1.2.]])
 +
 
 +
<ol>
 +
<li>All roof drains
 +
<ol>
 +
<li>must be designed and manufactured for roof applications only, and shall not be floor drains, and
 +
<li>shall be made so that the roof membrane can be sealed to the drain body or bowl (the membrane seal must not rely solely on a clamping ring).
 +
</li></ol>
 +
<li>Cast-iron ''primary roof drains''
 +
<ol>
 +
<li>must be supplied with a sump receiver and under-deck clamp,
 +
<li><span class="principles">should separate securement of the under-deck clamp and clamping ring from securement for the strainer,</span> and
 +
<li>{{hilite | must be installed by the trade supplying the roof drain. || 2023-June-16 }}
 +
</li></ol>
 +
<li>{{hilite | Cast-iron planter drains must be supplied with a perforated riser that is proprietary to the drain manufacturer (See the “RGC Standard for Vegetated Roofs”,|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#6.1.3.2._Planter_Drainage{{hilite | Article 6.1.3.2|| 2025-October-25 }}]).
 +
<li>{{hilite | Cast-iron ''scupper drains'' must be || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | supplied with a clamping strainer, || 2023-June-16 }} and
 +
<li>{{hilite | designed with cast, enclosed (captive) strainer bolt receivers (drains with bolts exposed on the back side of the drain body are not acceptable). || 2023-June-16 }}
 +
</li></ol>
 +
<li>Lead sheet flashing, when specified, must be sized to extend past the drain bowl by at least 152.4 mm (6”), and must have a weight of at least 15 kg/m<sup>2</sup> (3 lb/ft<sup>2</sup>).
 +
<li>All ''primary'' ''flanged insert drains'' (drains with a stem that inserts into a drain leader)
 +
<ol>
 +
<li> must be manufactured with a hot-welded or seamless flange at least 101.6 mm (4”) wide (measured from the outer edge of the drain opening),
 +
<li> must be hot-welded at the joints between the bowl/flange and drain stem, and
 +
<li><span class="recommended">should incorporate a clamping ring</span> (<span class="recommended">a clamping ring is recommended for ''primary flanged insert drains'' specified on any ''project''</span>), but clamping rings are required when ''primary flanged insert drains'' are specified for a '''''RoofStar 15-year Guarantee'''''.
 +
</li></ol>
 +
<li>''Primary flanged drains'' (insert drains or scuppers) that connect with plumbing inside the building (“internal” drains) must be constructed of
 +
<ol>
 +
<li>copper (min. weight: 24 oz. sheet copper; min. thickness: 20-gauge, or 0.889 mm (0.035”)), or
 +
<li>aluminum (min. thickness: 12-gauge, or 2.053 mm (0.08081”)).
 +
</li></ol>
 +
<li>''Primary flanged drains'' (insert drains or scuppers) that drain directly to the exterior of the building (“external” drains) must be constructed of
 +
<ol>
 +
<li>copper (min. weight: of 16 oz.; min. thickness: 24-gauge, or 0.559 mm (0.022”)), or
 +
<li>aluminum (min. thickness: 20-gauge material, or 0.812 mm (0.03196”)).
 +
</li></ol>
 +
<li>All ''scupper drains'' (open, or closed (boxed)) must be
 +
<ol>
 +
<li>manufactured with welded seams and joints,
 +
<li>designed to extend past the outside face of the wall, and
 +
<li>fabricated from
 +
<ol>
 +
<li>copper (min. weight: 16 oz.; min. thickness: 24-gauge, or 0.559 mm (0.022”)), or
 +
<li>aluminum (min. thickness: 20-gauge material, or 0.812 mm (0.03196”)).
 +
</li></ol>
 +
</li></ol>
 +
<li>In addition to the general requirements for ''scupper drains'', closed (boxed) ''scupper drains'' must also be
 +
<ol>
 +
<li>fully enclosed on four sides, for through-wall applications,
 +
<li>fabricated with a drip edge at the bottom outside edge of the drain to deflect overflow water away from the building, and
 +
<li>fitted with an overflow opening on the outside face of the scupper,
 +
<ol>
 +
<li>equal in capacity to the main drain leader opening, and
 +
<li>at least 38.1 mm (1 ½”) lower than the top surface of the ''scupper drain''.
 +
</li></ol>
 +
</li></ol>
 +
<li>''Overflow drains''
 +
<ol>
 +
<li>must have a hot-welded or seamless flange at least 101.6 mm (4”) wide when measured from the outer edge of the drain opening, and
 +
<li>may be manufactured from ferrous metals (See [[#Section 13.2. Materials | Section 13.2.]]).
 +
</li></ol>
 +
<li>All roof drains utilized in a ''roof assembly'' that includes gravel ballast or growing media (soil) must be supplied with the drain manufacturer's proprietary primary drain strainer and secondary stainless-steel ballast guard, but when one is not provided, a custom-fabricated guard may be used provided the guard
 +
<ol>
 +
<li>is fabricated from 20-gauge stainless-steel (0.9525 mm or 0.0375”),
 +
<li>incorporates 6.35 mm (1/4”) perforations, and
 +
<li>equals or exceeds the height of the ''finished roof system surface''.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===11.2.1.3. Membrane Gutters and Gutter Liners====
 +
 
 +
<ol>
 +
<li>Membrane gutter membranes shall be
 +
<ol>
 +
<li>accepted by the '''''Guarantor''''',
 +
<li>acceptable to the ''manufacturer'',
 +
<li>compatible with the adjoining ''roof system'',  and
 +
<li>manufactured for full adhesion (semi-adhesion and mechanical securement are not permissible).
 +
</ol></li>
 +
<li>A metal ''gutter'' liner
 +
<ol>
 +
<li>may be fabricated from
 +
<ol>
 +
<li>copper sheet material, incorporating soldered seams, or
 +
<li>stainless steel, incorporating welded seams, and
 +
</ol></li>
 +
<li>must conform to the sheet metal requirements in [[#13.2.1.2. Sheet Metal Grade and Gauge | Article 13.2.1.2.]]
 +
</ol></li>
 +
</ol></li>
 +
 
 +
====11.2.1.4. Fasteners====
 +
 
 +
<ol>
 +
<li>Mechanical fasteners used to secure the roof membrane and penetration flashings, or related accessories, must be
 +
<ol>
 +
<li>properly sized in accordance with ''roof system'' securement requirements (See [[#Part 3 - Securing the Roof Assembly | Part 3]]), and
 +
<li>self-drilling purpose-made screws manufactured with deep, recessed heads.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====11.2.1.5. Sealants====
 +
 
 +
<ol>
 +
<li>Sealants must be manufactured by, or acceptable to, the ''manufacturer''.
 +
<li>Compression sealants must be formulated to provide waterproofed seals under compressive loads.
 +
</li></ol>
 +
 
 +
====11.2.1.6. Liquid Membrane Flashing====
 +
 
 +
<ol>
 +
<li>{{hilite | Only a RoofStar-accepted|| 2021-February-7 }} reinforced {{hilite | <u>two-component</u> catalyzed polymethyl methacrylate (PMMA)|| 2021-February-7 }} {{hilite | or polyurethane methyl methacrylate (PUMA) liquid membrane flashing system || 2023-June-16 }} may be used on the water plane to flash roof drains, scuppers, and overflows.
 +
</ol></li>
 +
 
 +
==Section 11.3. Application==
 +
===11.3.1. Guarantee Term Requirements===
 +
====11.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====11.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>{{hilite | incorporate ''overflow drains'' in all roof areas || 2020-October-22 }},
 +
<li>utilize only ''primary drains'' and ''overflows'' manufactured with clamping rings, and
 +
<li>{{hilite | ensure the roof membrane is secured with drain clamping rings or, when specified, with a reinforced <u>2-component</u> liquid membrane flashing applied to conform to the requirements in this Part|| 2020-October-22 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===11.3.2. All Systems===
 +
====11.3.2.1. Condition and Suitability of Roof Drains====
 +
 
 +
<ol>
 +
<li>All clamping rings and strainers must be unbroken, properly seated, and fully secured.
 +
</li></ol>
 +
 
 +
====11.3.2.2. Location and Spacing of Roof Drains====
 +
(See also [[#Section 11.1. Design | Section 11.1., "Design"]])
 +
 
 +
<ol>
 +
<li>''Roof drains'' for new construction ''projects'' must be located at least {{hilite | 457.2 mm (18") || 2024-June-15 }} {{strike| 304.8 mm (12”) || 2023-June-15 }} away from any adjacent drain, penetration, upstand, edge, or wall (the separation space is measured between openings, excluding the flange).
 +
<li>The {{hilite | 457.2 mm (18") || 2024-June-15 }} {{strike| 304.8 mm (12”) || 2023-June-15 }} spacing requirement for ''roof drains'' does not apply to ''overflows'', ''scupper drains'', and drains used in membrane gutters.
 +
<li>''Roof drains'' and cap membrane seams must be offset from each other at least 304.8 mm (12”), measured from the edge of the drain.
 +
</li></ol>
 +
 
 +
====11.3.2.3. Drain Protection Against Blockage====
 +
 
 +
<ol>
 +
<li>All roof drains must be supplied and installed with a secured strainer to prevent debris from blocking the drain.
 +
<li>{{hilite | When a roof supports ''overburden'' or is secured with ballast, drains must be installed together with a surrounding ballast guard that promotes water flow|| 2020-July-3 }}.
 +
<li>{{hilite | When the ''overburden'' is a ''vegetated roof system'', ''roof drains'' must be protected by both a {{strike| gravel || 2024-October-29 }}{{hilite | stone || 2025-October-25 }}/ballast guard and a ''separation zone'', as required in|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#5.1.3.3._Separation_of_vegetation_from_roofing_details {{hilite |Article 5.1.3.3.|| 2025-October-25 }}] {{hilite |of the "RGC Standard for Vegetated Roofs"|| 2025-October-25 }} {{strike| (Ref. [[#14.1.3.8. Drainage | Article 14.1.3.8.]])|| 2024-October-29 }}.
 +
</ol></li>
 +
 
 +
====11.3.2.4. General Installation Requirements====
 +
 
 +
<ol>
 +
<li>{{hilite | Roof drains || 2024-June-15 }} must be
 +
<ol>
 +
<li>secured to the ''supporting deck'' structure, or to blocking, {{hilite | and || 2024-June-15 }}
 +
<li>{{hilite | properly detailed for ''continuity'' with specified ''control layers'' || 2024-June-15 }}.
 +
</ol></li>
 +
<li>Proprietary water-compression sealant must be used on all drain applications.
 +
<li>When a roof supports ''overburden'' or is secured with ballast, drains must be installed together with a surrounding ballast guard that promotes water flow.
 +
<li>When a membrane field seam comes within 152.4 mm (6”) of the drain clamping ring or a drain sump, the roof drain or sump must be separately flashed with a target patch
 +
<ol>
 +
<li>symmetrical in size and centred over the drain,
 +
<li>cut from the same material as the field membrane,
 +
<li>installed before the field membrane, to achieve positive membrane laps, and
 +
<li>extending past the cut field membrane a sufficient distance for the required seam (Ref. [[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]]).
 +
</li></ol>
 +
<li>Drains must be flashed using the primary membrane system or accessories acceptable to the ''manufacturer'' and the '''''Guarantor'''''.
 +
<li>When fleece-reinforced liquid membrane systems are used to flash drains, only a RoofStar-accepted reinforced {{hilite | two-component catalyzed polymethyl methacrylate (PMMA)|| 2021-February-7 }} may be used on the ''drainage plane'' to flash roof drains, ''scuppers'', and ''overflows''.
 +
</ol></li>
 +
 
 +
===11.3.3. Drains and Membrane Gutters===
 +
(The requirements for [[#11.3.2. All Systems | Subsection 11.3.2., "All Systems"]], shall be read together with the following Articles)
 +
 
 +
====11.3.3.1. Drain Sumps====
 +
 
 +
<ol>
 +
<li>When a 2-part liquid membrane flashing is specified for reinforcement of drain sumps, the liquid membrane flashing must continuously cover the sides of the sump, overlapping both the sump bottom and the roof field by at least 101.6 mm (4”).
 +
</li></ol>
 +
 
 +
====11.3.3.2. General Requirements for Cast-iron Roof Drains====
 +
 
 +
<ol>
 +
<li>Cast-iron roof drains must be installed by the plumbing/mechanical trade.
 +
<li>When cast-iron roof drains are used, a sump receiver and under-deck clamp must be provided and installed by the trade supplying the roof drain.
 +
<li><span class="principles">Drain extensions for cast-iron roof drains should be avoided</span>.
 +
<li><span class="principles">Existing flow {{hilite | control {{strike| restrictors || 2024-October-29 }} || 2025-October-25 }} removed during roof construction should be reinstalled</span>; {{hilite | however, if the replacement roof will support a ''vegetated roof system'', the drainage design must conform to the requirements set out by the '' Design Authority'' || 2025-October-25 }}.
 +
<li>All cast-iron roof drains must be
 +
<ol>
 +
<li>new or clean,
 +
<li>unbroken (this applies to the clamping ring also), and
 +
<li>flashed in accordance with the ''manufacturer's'' published instructions, or to the requirements published in this Part, whichever are greater.
 +
</li></ol>
 +
<li>The ''continuity'' of air and vapour ''control layers'' must be maintained, where the controls are specified.
 +
</li></ol>
 +
 
 +
====11.3.3.3. Cast-iron Drains Installed with Continuous Field Membrane====
 +
 
 +
<ol>
 +
<li>All ''roof system'' components, including tapered insulation, must be cut to fit closely around the drain bowl and leader.
 +
<li>The drain flange must be clean and dry.
 +
<li>A membrane-compatible sealant must be applied to the drain flange where it makes contact with the clamping ring.
 +
<li>The field membrane shall
 +
<ol>
 +
<li>extend over the drain flange and onto the roof field,
 +
<li>be cut for the drain opening so that the opening exceeds the size of the drain pipe,
 +
<li>be seated in a membrane-compatible sealant applied to the drain flange where it makes contact with the clamping ring,
 +
<li>extend inside drain bowl at least 12.7 mm (1/2") past the clamping ring and its attachment points,
 +
<li>be punched or tightly cut for clamping bolt holes (clamping ring bolts must be snugly threaded through each hole),
 +
<li>be formed to conform to the contours of the drain bowl, and
 +
<li>be symmetrical and large enough to extend from the clamping ring at least 152.4 mm (6”) to the edge of the finished seam.
 +
</li></ol>
 +
<li>The clamping ring must be seated and secured, ensuring it is not broken.
 +
<li>The drain screen must be securely installed.
 +
</li></ol>
 +
 
 +
====11.3.3.4. Cast-iron Drains Installed with Membrane Flashing====
 +
 
 +
<ol>
 +
<li>All ''roof system'' components, including tapered insulation, must be cut to fit closely around the drain bowl and leader.
 +
<li>The drain flange must be clean and dry.
 +
<li>A membrane-compatible sealant must be applied to the drain flange where it makes contact with the clamping ring.
 +
<li>When a membrane field seam comes within 152.4 mm (6”) of the drain clamping ring or a drain sump, the roof drain or sump must be separately flashed with separate membrane flashing ("target patch", "donut"), which shall
 +
<ol>
 +
<li>match the field membrane in thickness and composition,
 +
<li>be symmetrical and large enough to extend from the clamping ring at least 152.4 mm (6”) to the edge of the finished seam, centred over the drain,
 +
<li>be cut for the drain opening so that the opening exceeds the size of the drain pipe,
 +
<li>be installed before the field membrane, to achieve positive membrane laps,
 +
<li>extend inside drain bowl at least 12.7 mm (1/2") past the clamping ring and its attachment points,
 +
<li>be punched or tightly cut for clamping bolt holes (clamping ring bolts must be snugly threaded through each hole),
 +
<li>be formed to conform to the contours of the drain bowl, and
 +
<li>be hot-welded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch and sealed along the edges of the patch with a compatible sealant (Ref. [[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]]).
 +
</li></ol>
 +
<li>The clamping ring must be seated and secured, ensuring it is not broken.
 +
<li>The drain screen must be securely installed..
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====11.3.3.5. Cast-iron Roof Drain Retrofitting (Replacement Roofing)====
 +
 
 +
<ol>
 +
<li><span class="recommended">Retrofitting a cast-iron roof drain is not recommended</span>, but when retrofitting is unavoidable (i.e., the drain has deteriorated to the extent that it cannot receive a new roof membrane, and removal is not possible),
 +
<ol>
 +
<li>remove any broken parts and debris,
 +
<li>connect the retrofit insert to internal leaders using only an external coupling (unless impractical - see alternative requirements below), and
 +
<li>follow the requirements set out in [[#11.3.3.2. General Requirements for Cast-iron Roof Drains | Article 11.3.3.2.]]
 +
</li></ol>
 +
<li>When an internal compression seal is used out of necessity to connect a retrofit drain to an existing drain leader,
 +
<ol>
 +
<li>the joint must be properly prepared to ensure the joined surfaces are clean, smooth, and uniform, and
 +
<li>honing out the cast pipe may be required.
 +
</li></ol>
 +
<li>{{hilite | In the absence of a clamping collar, the retrofit insert drain must be sealed to the primary membrane with another method acceptable to the ''manufacturer'' and the '''''Guarantor'''''. || 2023-June-16 }}
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====11.3.3.6. Flanged Insert-type Roof Drain====
 +
 
 +
<ol>
 +
<li>''Flanged insert drains'' must be
 +
<ol>
 +
<li>supported with blocking,
 +
<li>trimmed to remove any sharp corners,
 +
<li>cleaned and prepared to receive membrane,
 +
<li>seated in water cut-off sealant applied to the top of the installed field membrane,
 +
<li>mechanically fastened to the blocking, or to the ''roof deck'', using fasteners conforming to [[#11.2.1.4. Fasteners | Article 11.2.1.4.]],
 +
<li>primed with the ''manufacturer's'' accepted primer, and
 +
<li>covered with a target patch
 +
<ol>
 +
<li>matching the composition of the membrane used in the field,
 +
<li>cut large enough to extend past the flange at least 76.2 mm (3”),
 +
<li>adhered to the flange with the ''manufacturer's'' proprietary adhesive,
 +
<li>hot-welded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch (Ref. [[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]]), and
 +
<li>sealed around all edges with the ''manufacturer's'' edge sealant.
 +
</li></ol>
 +
</li></ol>
 +
<li>Only mechanical compression type seals may be used to connect insert-type drains to internal drain leaders; “O”- rings, mastics and caulking are not acceptable methods for sealing these types of drains to leaders.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====11.3.3.7. Scuppers and Overflows====
 +
 
 +
<ol>
 +
<li>''Open scupper drains'' may be constructed to match the height of the roof or membrane ''gutter'' edge, but must be fully sealed with membrane flashing (Ref. Construction Detail [[SBS Open-wall Scupper Drain | "Open-wall Scupper Drain"]]).
 +
<li>When a ''through-wall scupper'' is specified, only fully enclosed scupper drains (enclosed on all sides and open only at the inflow and outflow ends) may be installed (Ref. Construction Detail [[SBS Through-wall Scupper Drain  | "Through-wall Scupper Drain"]]).
 +
<li>''Scuppers'' and ''overflows'' that are installed through walls may be installed no closer than 203.2 mm (8") to
 +
<ol>
 +
<li>a roof drain, or
 +
<li>any protrusion and its flashing.
 +
</li></ol>
 +
<li>''Scupper'' and ''overflow'' assemblies must be
 +
<ol>
 +
<li>supported with blocking,
 +
<li>trimmed to remove any sharp corners,
 +
<li>cleaned and prepared to receive membrane,
 +
<li>seated in water cut-off sealant applied to the top of the installed field membrane,
 +
<li>mechanically fastened to the substrate (i.e., blocking, the ''roof deck'', and the ''wall'') with fasteners conforming to [[#11.2.1.4. Fasteners | Article 11.2.1.4.]]
 +
<li>primed with the ''manufacturer's'' accepted primer, and
 +
<li>covered with a target patch</span>
 +
<ol>
 +
<li>matching the composition of the membrane used in the field,
 +
<li>cut large enough to extend past the flange at least 76.2 mm (3”),
 +
<li>adhered to the flange with the ''manufacturer's'' proprietary adhesive,
 +
<li>hot-welded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch (Ref. [[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]]), and
 +
<li>sealed around all edges with the ''manufacturer's'' edge sealant.
 +
</li></ol>
 +
</li></ol>
 +
<li>Clamping collars must be securely installed according to their design, and where specified.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====11.3.3.8. Membrane Gutters====
 +
 
 +
<ol>
 +
<li>All ''gutter'' membranes must be installed according to the ''manufacturer’s'' published instructions.
 +
<li>Sheet membranes installed in a ''gutter'' must be
 +
<ol>
 +
<li>carried up an adjoining ''roof system'' (measured vertically from the maximum water level)
 +
<ol>
 +
<li>at least 152.4 mm (6”), or
 +
<li>at least 304.8 mm (12”) in regions with typical heavy snow,
 +
</ol></li>
 +
<li>lapped under and sealed to the adjoining membranes at least 152.4 mm (6”),
 +
<li>installed in keeping with application requirements in this Standard,
 +
<li>mechanically secured at their terminations, both on the outside of the ''gutter'' edge and on the field, and
 +
<li>secured above the maximum water level at least 152.4 mm (6”) and no more than 304.8 mm (12”) O.C.
 +
</ol></li>
 +
<li>''Gutter'' drains and overflows must be installed in keeping with the requirements in [[#Section 11.1. Design | Section 11.1., "Design"]].
 +
<li>Drain flanges that must be bent to accommodate the width of the ''gutter'' must be mechanically fastened to the ''gutter'' wall before membrane is installed.
 +
<li>A metal ''gutter'' liner
 +
<ol>
 +
<li>must incorporate soldered seams when it is fabricated from copper sheet material,
 +
<li>must incorporate welded seams when it is fabricated from stainless steel, and
 +
<li>must be installed
 +
<ol>
 +
<li>over an adhered single ply membrane, no less than 2.3 mm (90 mils) thick (bituminous membranes) or 1.5 mm (60 mils) thick (non-bituminous membranes), and
 +
<li>with a ''separation layer'' (slip sheet) between the membrane and the metal liner to prevent damage to the membrane caused by the liner at its joints.
 +
</ol></li>
 +
</ol></li>
 +
<li>The transition from a membrane ''gutter'' to a ''water-shedding system'' that is insulated (typically ASM only) shall conform to the requirements for membrane ''gutters'' in the "Standard for Architectural Sheet Metal (ASM) Roof Systems" (See Construction Detail [[ASM Membrane Gutter (Design Elements) | "Membrane Gutter (Design Elements)"]] for an illustrated example).
 +
</ol></li>
 +
 
 +
 
 +
<hr>
 +
<div id=PART_12></div>
 +
 
 +
=Part 12 - Penetrations and Curbs=
 +
==Section 12.1. Design==
 +
===12.1.1. General===
 +
====12.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====12.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].
 +
</li></ol>
 +
 
 +
===12.1.2. Guarantee Term Requirements===
 +
====12.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====12.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''; in addition,
 +
<ol>
 +
<li>{{hilite |when a roof is replaced, all open-top penetration flashings (flashings without a top cover) must be waterproofed as described elsewhere in this Part and shall be installed with clamped double storm collars that are fully sealed around the upper edge,|| 2020-October-22 }}
 +
<li>{{hilite |when a roof is installed on a newly constructed building, all penetration flashings that are usually fitted with a single storm collar (typically supplied and installed by others) must be fitted with a second storm collar, supplied by the ''Contractor'', || 2020-October-22 }}
 +
<li>{{hilite | all electrical, gas, and other services, that penetrate the ''roof assembly'' must be protected against water intrusion with || 2020-October-22 }}
 +
<ol>
 +
<li>{{hilite | purpose-made flashings that are sealed into the ''roof system'', || 2020-October-22 }}
 +
<li>{{hilite | curbs fitted with a “weather head” hood sealed into the curb membrane flashing, || 2020-October-22 }} or
 +
<li>sealant pockets (used only where unavoidable) that conform to this Part and are at least 101.6 mm (4”) tall, or are elevated the same distance above the water plane (when measured from the water plane to the top of the pocket), and
 +
</li></ol>
 +
<li>{{hilite | when penetrations or vent openings in a ''conventionally insulated roof system'' are flashed using galvanized or hot-welded materials, the flashings must conform to the requirements in [[#Section 12.2. Materials | Section 12.2.]] and shall be|| 2021-February-7 }}
 +
<ol>
 +
<li>{{hilite | elevated on ''curbs'',|| 2021-February-7 }} and
 +
<li>{{hilite | flashed with the primary membrane.|| 2021-February-7 }}
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===12.1.3. All Systems===
 +
====12.1.3.1. General Requirements for Penetrations====
 +
 
 +
<ol>
 +
<li>{{hilite | Where a roof design includes openings through the ''roof assembly'' (i.e., for mechanical or electrical services), the specification and detail drawings shall || 2024-June-15 }}
 +
<ol>
 +
<li>{{hilite | provide direction for ''continuity'' of ''control layers'', where these layers intersect with any opening or penetration, and || 2024-June-15 }}
 +
<li>{{hilite | require a ''curb'' or an acceptable penetration flashing to enclose and seal each roof opening. || 2024-June-15 }} {{strike| must be enclosed and sealed with a ''curb'', or a penetration flashing || 2023-June-15 }}
 +
</li></ol>
 +
<li>{{hilite | Each penetration (except for clustered or bundled electrical cables) must be flashed separately from others. || 2023-June-16 }}
 +
<li>{{hilite | Single or bundled electrical cable penetrations must be flashed with a suitable goose-neck flashing, fitted with a weather head|| 2020-July-3 }}.
 +
<li>Penetration flashings must be
 +
<ol>
 +
<li>new,
 +
<li>suitable for the type of penetration,
 +
<li>{{hilite | proprietary to the ''manufacturer'', if available, || 2024-January-31}}
 +
<li>{{hilite | supported with solid blocking (applicable only to metal-flanged flashings; blocking must extend at least 12.7 mm (1/2") beyond flange edges), || 2024-January-31 }} and
 +
<li>properly {{hilite | sized and || 2024-January-31 }} fitted {{strike| to form a seal || 2023-January-25 }} {{hilite | around the penetration to permit a seal (gaps between the penetration and the inside of the flashing shall be no more than 12.7 mm (1/2") || 2024-January-31 }}, or
 +
<li>of sufficient height to be made water-tight with a site-fabricated membrane seal fashioned to enclose the gap between the flashing and the penetration (see Figure 12.3.2.1.-A); the application of liquid sealant around the penetration in an open-top flashing is not acceptable.
 +
</li></ol>
 +
<li><span class="recommended">Penetration flashings should be selected for their ability to inhibit the intrusion of vermin and insects into the roof assembly and building interior.</span>
 +
<li>{{hilite | Suitable flashings must be specified for penetrations that are expected to expand, contract, or otherwise move. || 2024-January-31 }}
 +
<li>{{hilite | Cylindrical ("pipe-type") penetrations must be sealed with|| 2020-July-3 }}
 +
<ol>
 +
<li>{{hilite | the ''manufacturer’s'' proprietary rubber-based friction seals that utilize mechanical clamps,|| 2020-July-3 }}
 +
<li>{{hilite | a 2-part site-fabricated or proprietary flashing with a removable inspection/access cap|| 2020-July-3 }} (Ref. Construction Detail [[SBS 2-Part Retrofit Flashing (Cable Penetration) | "2-Part Retrofit Flashing (Cable Penetration)"]]), or
 +
<li>roof ''curbs'' fitted with customized metal hoods or square-to-round metal flashing.
 +
</li></ol>
 +
<li>{{hilite | Aluminum or copper flashings for penetrations may be located at the ''drainage plane'' in any assembly type. || 2020-February-15 }}
 +
</li></ol>
 +
 
 +
====12.1.3.2. Galvanized Penetration Flashings====
 +
<ol>
 +
<li>{{hilite | Galvanized flashings and vents || 2020-February-15 }} {{strike| are permitted || 2022-October-28 }} {{hilite | may be specified for use || 2023-October-28 }} in the ''drainage plane'' on ''uninsulated'' or ''conventionally insulated systems'', provided {{hilite | they conform to the requirements and conditions in || 2023-October-28 }} [[#12.3.2.2. Galvanized Penetration Flashings | Article 12.3.2.2.]]
 +
{{strike| <ol>
 +
<li>the base is coated (see [[#12.3.2.2. Galvanized Penetration Flashings | Article 12.3.2.2.]]), and
 +
<li>{{hilite | the penetration opening does not exceed 0.126 m<sup>2</sup> (196 in.<sup>2</sup>) || 2020-October-22 }}.
 +
</li></ol> || 2022-October-28 }}
 +
<li>All galvanized penetration flashings or vents specified for use in a ''protected roof system'' or ''modified protected roof system'' must be located on ''curbs'' no less than 203.2 mm (8") in height above the ''finished roof system surface''.
 +
<li>Galvanized flashings {{hilite | with a base opening || 2023-October-28 }} {{strike| used for penetrations or openings || 2022-October-28 }} larger than 0.126 m<sup>2</sup> (196 in.<sup>2</sup>) in size must be supported by a ''curb''.
 +
</li></ol>
 +
 
 +
====12.1.3.3. Separation Between Details====
 +
 
 +
<ol>
 +
<li>Penetrations on new construction ''projects'' must be separated from
 +
<ol>
 +
<li>{{hilite | other penetrations, {{strike| drains, || 2023-June-15 }} ''curbs'', walls, or changes in plane {{strike| so that the space between flashings for these details is || 2023-June-15 }} at least 304.8 mm (12") (this is measured between openings or the edge of a detail and excludes the flashing flange){{strike| ; the exception to this requirement is customized penetration flashings designed for multiple individual or clustered penetrations. || 2023-June-15 }}, and || 2024-June-15 }}
 +
<li>{{hilite | all roof drains at least 457.20 mm (18") (Also see || 2024-June-15 }} [[#11.1.3.2. Roof Drain Function and Location | Article 11.1.3.2.]]).
 +
</li></ol>
 +
<li>{{hilite | Penetrations that are closer together than the stated minimum, and which are flashed with a single customized flashing or ''curb'' are exempt from the requirement in Sentence (1) || 2024-June-15 }}.
 +
<li>When {{strike| a roof is replaced and existing penetration locations do|| 2023-June-15 }} {{hilite | the separation between details does not comply with the spacing requirements in this Part, {{strike| the ''Design Authority'' must submit a written request for a Variance, as specified in [[#1.1.3.6. Variances | Article 1.1.3.6., "Variances"]] || 2023-June-15 }} only the alternate application methods described in|| 2024-June-15 }} [[#12.3.2.3. Separation Between Penetration Flashings | Article 12.3.2.3.]] {{hilite | will be permitted by the '''''Guarantor'''''. || 2024-June-15 }}
 +
</li></ol>
 +
 
 +
====12.1.3.4. Curbs, Sleepers, and Equipment Pads====
 +
 
 +
<ol>
 +
<li>The design and placement of curbs and sleepers shall be the responsibility of the ''Design Authority''.
 +
<li>{{hilite | ''Curbs'' must be designed so that they can be secured directly to the ''deck'' structure, or to intermediate blocking, and must not be situated on top of the ''roof system''. || 2020-February-15 }}
 +
<li>All ''curbs'', sleepers, and deck-supported equipment pads must be designed to achieve a minimum height of 203.2 mm (8”), measured from the ''finished roof system surface'', to permit proper membrane flashing.
 +
<li>Notwithstanding the minimum height requirement membrane flashing, ''curbs'' and sleepers that are completely sealed (enveloped) with membrane, and are free of penetrations through the top face (i.e., equipment isolators) may be less than 203.2 mm (8”) in height but shall be
 +
<ol>
 +
<li>no less than 101.6 mm (4") in height, or
 +
<li>no less than 127 mm (5") in height when capped with a ''linear metal flashing''.
 +
</li></ol>
 +
<li>Equipment isolators are not considered part of the ''roof system'' and therefore any leaks caused by or occurring at isolators shall be excluded from coverage under the '''''Guarantee'''''.
 +
<li>Equipment ("housekeeping") pads placed on top of the ''finished roof system surface'' and supporting combined loads
 +
<ol>
 +
<li>less than 90 kg (200 lbs) must be separated from the membrane with a bond-breaking layer (i.e., XPS insulation), and
 +
<li>greater than 90 kg (200 lbs) must conform to the requirements for structural sleepers or equipment pads.
 +
</ol></li>
 +
<li>Reinforced liquid membrane flashing systems may be specified only where
 +
<ol>
 +
<li>sheet membrane applications are not practicable (i.e., complex geometry), or
 +
<li>the top edge of membrane plies must be terminated on a vertical surface and other means of termination are not practicable or even possible.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====12.1.3.5. Protection of Roof Membranes====
 +
 
 +
<ol>
 +
<li>The ''Design Authority'' must consider and specify mitigating strategies to preserve the membrane from damage (i.e., specifying grease guards or a reinforced 2-part liquid membrane coating) when mechanical equipment extracts and discharges grease, chemicals, or other contaminants, onto the roof.
 +
</li></ol>
 +
 
 +
====12.1.3.6. Railings, Ladders, and Other Attached Structures====
 +
 
 +
<ol>
 +
<li>Railings, ladders, and other attached structures shall not be affixed at the field membrane level and <span class="principles">should be designed for attachment to vertical surfaces only</span>.
 +
<li><span class="principles">Attachment of railings, ladders, and other attached structures to a raised horizontal substrate is strongly discouraged</span>, but when this manner of securement is specified, the design must be submitted in writing by the ''Design Authority'' to the '''''Guarantor''''' for review and acceptance through a written Variance.
 +
<li><span class="recommended">Ladders, railings, or other structures that may penetrate the ''roof system'', should be designed to minimize thermal bridging (and consequential condensation) or reduced thermal performance; uninsulated direct, rigid connections to the structural deck or walls is strongly discouraged.</span>
 +
<li></span>Pourable sealant pockets used to flash vertical penetrations should be specified only as a last resort, for use only when other flashing methods are impractical ({{hilite |Ref. [[#12.3.2.8. Sealant Pockets | Article 12.3.2.8., "Sealant Pockets"]]|| 2020-July-3 }}).
 +
</li></ol>
 +
 
 +
==Section 12.2. Materials==
 +
(See [[Division_C | Division C, "Accepted Materials"]])
 +
 
 +
===12.2.1. Material Properties===
 +
====12.2.1.1. Membranes Used for Flashing====
 +
 
 +
<ol>
 +
<li>Sheet membranes used to flash (strip in) penetrations and ''curbs'' shall be
 +
<ol>
 +
<li>the same membrane used on the roof field, or
 +
<li>sheet or liquid membranes conforming to  [[#10.2.1.1. Flashing Membranes | Article 10.2.1.1.]]
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====12.2.1.2. General Requirements for Penetration Flashings====
 +
 
 +
<ol>
 +
<li>All roof penetration flashings, except flashings that are proprietary to the ''manufacturer'', must be
 +
<ol>
 +
<li>accepted by or acceptable to the '''''Guarantor''''',
 +
<li>manufactured to conform to CSA-B272, "Prefabricated Self-Sealing Roof Vent Flashings" (a penetration flashing fabricated by the ''Contractor'' is exempt from this requirement),
 +
<li>permanently marked with the standard number it conforms to, which shall be independently validated through published testing by a qualified third-party,
 +
<li>{{hilite | manufactured from sheet metal conforming to the material requirements in || 2023-June-16 }} [[#Section 13.2. Materials | Section 13.2.]]{{hilite | , when the flashing is custom-made or fabricated by the ''Contractor'', || 2023-June-16 }}
 +
<li>{{hilite | compatible with the ''roof system'', || 2023-June-16 }}
 +
<li>seamless or, in the alternative, fabricated with fully hot-welded joints, including a base flange at least 101.6 mm (4”) wide,
 +
<li>capable of inhibiting the intrusion of vermin and insects into the ''roof assembly'' and building interior, and
 +
<li>at least 203.2 mm (8”) tall when measured from the ''finished roof system surface'' to an opening, or to the top of the flashing.
 +
</li></ol>
 +
<li>Metal penetration flashings that are purpose-made for
 +
<ol>
 +
<li>electrical cables must be goose-necked and supplied with a downward-facing weather head, and
 +
<li>{{hilite | plumbing vents shall be supplied with a matching settlement cap produced by the same manufacturer. || 2023-June-16 }}
 +
</li></ol>
 +
<li>Galvanized penetration flashings, and galvanized vents, must
 +
<ol>
 +
<li>meet or exceed the CSA-A93 Standard,
 +
<li>be made with material galvanized steel (26-gauge or heavier) conforming to the metal requirements found in [[#Part 13 - Linear Metal Flashing | Part 13, "Linear Metal Flashing"]], and
 +
<li>be at least 203.2 mm (8”) tall when measured from the ''finished roof system surface'' to an opening.
 +
</li></ol>
 +
<li>Storm collars
 +
<ol>
 +
<li>must be fashioned from galvanized or stainless steel,
 +
<li>{{hilite | must slope downward from the penetration approximately 45°,|| 2021-June-30 }}
 +
<li>{{hilite | shall be at least 50.8 mm (2”) wide|| 2021-June-30 }},
 +
<li>shall be self-locking or, in the alternative, manufactured to receive a mechanical band clamp, and
 +
<li><span class="principles">should be fabricated with a channel at the top edge, for retaining sealant.</span>
 +
</li></ol>
 +
<li>{{hilite | EPDM used to form a seal between a penetration and its flashing (Ref. || 2024-January-31 }} [[#12.3.2.1. General Requirements for Flashing Penetrations | Article 12.3.2.1.(12)]]) {{hilite | shall be semi-cured and possess a nominal thickness of no less than 60 mils. || 2024-January-31 }}
 +
<li>{{hilite | Unshielded flexible mechanical couplings used to join a flashing and a pipe penetration shall be || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | certified to meet ASTM C564 or ASTM D5926, || 2024-January-31 }}
 +
<li>{{hilite | certified to meet ASTM C1173 and CSA-B602, || 2024-January-31 }}
 +
<li>{{hilite | supplied with top and bottom proprietary screw-type stainless steel mechanical clamps, || 2024-January-31 }}
 +
<li>{{hilite | leak-proof, resistant to chemicals, UV-stable, and || 2024-January-31 }}
 +
<li>{{hilite | suitable for the penetration and flashing they join together. || 2024-January-31 }}
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====12.2.1.3. Flashings for Heating and Plumbing System Penetrations====
 +
 
 +
<ol>
 +
<li>All plumbing vent flashings shall be non-ferrous.
 +
<li>{{hilite | Lead plumbing vent flashings must each be|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | fabricated with sheet lead material weighing no less than 14.65 Kg/m2 (3lb/sf)|| 2021-June-30 }},
 +
<li>{{hilite | properly sized for the pipe|| 2021-June-30 }}, and
 +
<li>{{hilite | supplied with a settlement cap made from the same materials (the inside collar of the settlement cap must fit vertically inside the pipe opening by at least 25.4 mm (1”))|| 2021-June-30 }}.
 +
</li></ol>
 +
<li>{{hilite |In addition to the general requirements in [[#12.2.1.2. General Requirements for Penetration Flashings | Article 12.2.1.2.]], all metal penetration flashings (except natural airflow vents) used for heating and plumbing penetrations must be|| 2021-June-30 }}
 +
<ol>
 +
<li>properly sized for the penetration, both in diameter and height,
 +
<li>flexible or sloped to suit the roof slope, and
 +
<li>supplied with a properly sized galvanized storm collar or settlement cap.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====12.2.1.4. Reserved====
 +
 
 +
==Section 12.3. Application==
 +
===12.3.1. Guarantee Term Requirements===
 +
====12.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====12.3.1.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall comply with the requirements in Article 12.1.1.2.
 +
</li></ol>
 +
 
 +
===12.3.2. All Systems===
 +
====12.3.2.1. General Requirements for Flashing Penetrations====
 +
 
 +
<ol>
 +
<li>All penetration flashing materials must be new.
 +
<li>Anything that penetrates through the {{hilite | ''roof assembly'' || 2024-June-15 }} {{strike| system || 2023-June-15 }}, including openings for ventilation, must be
 +
<ol>
 +
<li>{{hilite | sealed to each ''control layer'' that it passes through or intersects, and || 2024-June-15 }}
 +
<li>flashed with a ''curb'', a purpose-made flashing, or a custom-fitted flashing, all of which shall be sealed to the ''roof system'' so that the penetration or opening is protected from water ingress, to at least 203.2 mm (8") above the ''finished roof system surface''.
 +
</li></ol>
 +
<li>{{hilite | Each roof penetration must have its own flashing (except where a purpose-made flashing is designed for multiple penetrations), and each flashing|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | must be suitable for the slope and penetration|| 2021-June-30 }}, and
 +
<li>{{hilite | must be properly {{hilite | sized and || 2024-January-31 }} fitted {{strike| to form or permit a seal || 2023-January-26 }} around the penetration {{hilite | to permit a seal|| 2024-January-31 }}|| 2021-June-30 }}.
 +
</li></ol>
 +
<li>Non-ferrous penetration flashings and vents that conform to the material requirements in [[#Section 12.2. Materials | Section 12.2.]] may be located at the ''drainage plane'' in any assembly type.
 +
<li>{{hilite | Lead penetration flashings are not permitted. || 2024-January-31 }}
 +
<li>{{hilite | All penetration flashings must be clean, dry, absolutely free of contaminants, have an exterior finish that is suitable to receive sheet or liquid membrane flashing, and must be prepared in keeping with any surface preparation requirements published by the membrane ''manufacturer''. || 2023-October-28 }}
 +
<li>Cable and horizontal pipe penetrations must be flashed with
 +
<ol>
 +
<li>a purpose-made flashing (i.e., a goose-neck flashing fitted with a weather head),
 +
<li>a sheet membrane-flashed curb fitted with a customized sheet metal hood (shaped to function like a weather head), or
 +
<li>{{hilite | a 2-component fleece-reinforced liquid membrane flashing as described in [[#12.3.2.6. Liquid Membrane Flashing | Article 12.3.2.6.]] (when other methods are not possible or practicable)|| 2020-July-3 }}.
 +
</ol></li>
 +
<li><span class="principles">Cables passing through a penetration flashing should be drooped, and horizontal pipes should be fitted with a capillary-breaking collar, to prevent water from tracking along the cable or pipe, into the building</span>; {{hilite | water tracking along cables and horizontal pipes does not constitute a leak and is therefore excluded from coverage under the '''''Guarantee'''''. || 2023-June-16 }}
 +
<li>{{hilite | Each metal-flanged penetration flashing || 2024-June-15 }} must be installed after the field membrane and shall be
 +
<ol>
 +
<li>{{hilite | firmly supported with a panel or with blocking installed {{strike| provided || 2023-June-15 }} below the field membrane, so that firm support || 2024-June-15 }} {{hilite | {{strike| that || 2023-June-15 }} extends past the flange edge by at least 12.7 mm (1/2") || 2024-January-31 }} {{hilite | (See [[Notes to PVC Standard#A-12.3.2.1.(9) | Note A-12.3.2.1.(9)]]) || 2024-June-15 }},
 +
<li>trimmed {{hilite | (radiused) || 2024-January-31 }} to remove any sharp corners,
 +
<li>cleaned and prepared to receive membrane,
 +
<li>seated in water cut-off sealant applied to the top of the installed field membrane,
 +
<li>{{hilite | mechanically fastened to the roof ''deck'', or to the panel or blocking that is secured to the ''deck'', || 2024-June-15 }} {{strike| fastened to the blocking, or to the ''roof deck'' || 2023-June-15 }},
 +
<li>primed with the ''manufacturer's'' accepted primer, and
 +
<li>{{hilite | sealed to the field membrane with || 2024-June-15 }}
 +
<ol>
 +
<li>{{hilite | its own sheet membrane target patch (the use of a single target patch for multiple penetration flashings is not permissible unless otherwise stated in this Standard) or || 2024-June-15 }}
 +
<li>{{hilite | membrane flashing (retrofit flashings only) || 2024-June-15 }}.
 +
</ol></li>
 +
{{strike| {{hilite | Retrofit flashings (metal flashings fitted together around a penetration and riveted or clamped together) shall be flashed with || 2023-June-16 }}
 +
{{hilite | base sheet membrane flashing carried up the vertical face of the flashing at least 203.2 mm (8") and past the base flange at least 101.6 mm (4"), and|| 2023-June-16 }}
 +
{{hilite | cap sheet membrane flashing which fully covers the base sheet flashing and extends past the termination of the base flashing by at least 50.2 mm (2")|| 2023-June-16 }} (Ref. Construction Detail [[SBS 2-Part Retrofit Flashing (Cable Penetration) | "2-Part Retrofit Flashing (Cable Penetration)"]]). || 2023-June-15 }}
 +
</ol></li>
 +
<li>{{hilite | When penetration flashings are closer than 457.2 mm (18") to a ''roof drain'', the drain must be flashed with a target patch first so that the membrane target patch around the penetration flashing promotes positive drainage; once sealed in with target patches, the field cap sheet membrane may be installed. || 2024-June-15 }}
 +
<li>{{hilite | When the separation between penetration flashings is less than 304.8 mm (12") but greater than 203.2 mm (8") (Ref. || 2024-June-15 }} [[#12.1.3.3. Separation Between Details | Article 12.1.3.3.]]), {{hilite | the penetrations must be flashed together with a single membrane target patch that shall || 2024-June-15 }}
 +
<ol>
 +
<li>{{hilite | extend past the flange by at least 101.6 mm (4"), || 2024-June-15 }}
 +
<li>{{hilite | be installed according to the requirements in this Article, || 2024-June-15 }}
 +
<li>{{hilite | achieve a fully-adhered seal around the circumference of the flashing flange, and || 2024-June-15 }}
 +
<li>{{hilite | be reinforced at any overlapping joints with T-joint patches. || 2024-June-15 }}
 +
</ol></li>
 +
<li>{{hilite | When the separation between penetration flashings is less than 203.2 mm (8"), or the proximity of penetrations to each other will result in an overlapping of pre-formed flashings, the penetrations must be waterproofed || 2024-June-15 }}
 +
<ol>
 +
<li>{{hilite | with a curb, || 2024-June-15 }}
 +
<li>{{hilite | by elevating the penetrations above the drainage plane, or || 2024-June-15 }}
 +
<li>{{hilite | with another method acceptable to the '''''Guarantor''''' || 2024-June-15 }} (See Note A-12.3.2.1.(13)).
 +
</ol></li>
 +
<li>Sheet membrane target patches applied over flanged penetration flashings {{hilite | shall be || 2024-January-31 }}
 +
<ol>
 +
<li>{{strike| shall be || 2023-January-26  }}{{hilite | cut from a single piece of field membrane (when the penetration is large, the target patch may be cut from two pieces of membrane that must be joined with lapped seams conforming to the requirements for seams in || 2024-June-15 }}[[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]],
 +
<li>{{strike| must be || 2023-January-26  }} {{strike| a single piece or, when the penetration is large, two pieces that must be joined with laps at least 152.4 mm (6”) in width, || 2023-June-15 }} {{hilite | sized to extend past the edge of the flashing flange onto the roof field by at least 76.2 mm (3") (for non-conforming penetration spacing, see Sentence (12) in this Article) || 2024-June-15 }},
 +
<li>oriented 45-degrees to the direction of drainage,
 +
<li>adhered to the flange with the manufacturer's proprietary adhesive,
 +
<li>''fully bonded'' to the field membrane along the outer 50.8 mm (2”) perimeter of the patch (Ref. [[#9.3.2.6. Membrane Seams | Article 9.3.2.6.]]), and
 +
<li>sealed around all edges with the manufacturer's edge sealant.
 +
</ol></li>
 +
<li>Retrofit flashings (metal flashings fitted together around a penetration and riveted or clamped together) shall be flashed with membrane (Ref. [https://rpm.rcabc.org/index.php?title=SBS_2-Part_Retrofit_Flashing_(Cable_Penetration) Construction Detail "2-Part Retrofit Flashing (Cable Penetration)"]).
 +
<li>Where required in this Standard, membrane flashing shall be carried up the vertical surface of a penetration flashing at least 203.2 mm (8"), and clamped.
 +
<li>{{hilite | Where a purpose-made flashing does not fit the penetration (i.e., a penetration that is a square post), or when a penetration extends above the top edge of the flashing so that it cannot be enclosed with a cap {{hilite | See '''Figure 12.3.2.3.-A'''|| 2025-October-25 }}), the joint between the penetration and the flashing must be sealed|| 2020-July-3 }}
 +
<ol>
 +
<li>by wrapping the joint with a properly-sized piece of {{hilite |semi-cured EPDM (or its equivalent)|| 2020-July-3 }},
 +
<ol>
 +
<li>{{hilite | loosely wrapped around the penetration and the flashing at least 1-1/2 times, or adhered to itself and overlapped at least 50.8 mm (2") ||2021-February-7 }},
 +
<li>{{hilite | installed free of wrinkles or fish-mouths ||2021-February-7 }},
 +
<li>applied so that it extends on either side of the joint by at least 50.8 mm (2"), and
 +
<li>{{hilite | clamped at the top and at the bottom using stainless steel clamps set back from the membrane edge no more than 6.35 mm (1/4") ||2021-February-7 }}, or
 +
</ol></li>
 +
<li>with {{hilite | heat- ||2021-February-7 }}shrink tubing that
 +
<ol>
 +
<li>{{hilite | covers both sides of the joint between the penetration and the flashing, by at least 50.8 mm (2") ||2021-February-7 }}, and
 +
<li>is secured with stainless steel mechanical clamps installed at each end of the tubing.
 +
</ol></li>
 +
</ol></li>
 +
<li>{{hilite | Penetrations that are flashed but are not immediately sealed using the methods described above must be temporarily protected from the weather with at least one properly fitted, level storm collar. || 2023-June-16 }}
 +
<li>{{hilite | Unshielded flexible mechanical ("MJ") couplings || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | shall be clamped to the penetration and its flashing, and sealed along the top edge with an acceptable sealant, and || 2024-January-31 }}
 +
<li>{{hilite | are suitable for use only with penetrations that will not expand, contract, or move with anticipated building settlement, i.e., fall protection anchors. || 2024-January-31 }}
 +
</ol></li>
 +
<li>{{hilite | On a vertical penetration where a seal cannot be made between the flashing and the penetration (i.e., where the penetration is a hot pipe, or where movement of the penetration is anticipated), the opening between the penetration and top of the flashing must be protected with || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | at least one storm collar, secured with a separate mechanical (screw-type) clamp, || 2023-June-16 }} or
 +
<li>{{hilite | no fewer than two storm collars, each manufactured with friction-type clips, and spaced approximately 25.4 mm (1") apart. || 2023-June-16 }}
 +
</ol></li>
 +
<li>{{hilite | All installed storm collars must be sealed with a continuous, untooled bead of acceptable sealant at least 9.53 mm (3/8”) wide, applied to and centered over the joint between the collar and the penetration|| 2020-July-3 }}. 
 +
<li>Reinforced liquid membrane flashing systems may be used to seal a penetration on, or within 203.2 mm (8") of, the drainage plane, but only where
 +
<ol>
 +
<li>{{hilite | the penetration is structurally attached to a solid roof ''deck'' (concrete or mass timber), || 2023-June-16 }} and
 +
<li>{{hilite | the penetration is structurally independent of the roof ''deck'', but is of the same type of material (i.e., steel post passing through a steel deck), || 2023-June-16 }} or
 +
<li>sheet membrane applications are not practicable (i.e., complex geometry), or
 +
<li>the top edge of sheet membrane plies must be terminated on a vertical surface and other means of terminating them are not practicable or even possible.
 +
</ol></li>
 +
</ol></li>
 +
</ol></li>
 +
<br>
 +
::{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 12.3.2.3.-A Alternate Flashing of Pipe Penetration''' || 2025-October-25 }}<br>{{hilite | Forming Part of Sentence 12.3.2.3.(16) || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 
|-
 
|-
| [[File:PARS Illustration - Option 3 (SMALL).jpg|class=img-responsive | link=https://rpm.rcabc.org/images/5/5e/PARS_Illustration_-_Option_3_%28SMALL%29.jpg | 400 px |Figure 7.2c]]
+
| [[File:Figure 11.3.3.1-1 (SPly).jpg |link=https://rpm.rcabc.org/images/b/b8/Figure_11.3.3.1-1_%28SPly%29.jpg | 400 px]]
 
|}
 
|}
</div>
+
 
<div class="col-md-3">
+
====12.3.2.2. Galvanized Penetration Flashings====
{| class="wikitable"; table style="background-color:white"; border="#A9A9A9;"
+
 
|+ <small>Figure 3.1.4.1.-D</small>
+
<ol>
 +
<li>Galvanized, hot-welded flashings and vents {{strike| may be || 2022-October-28 }} installed on the ''drainage plane'' of ''uninsulated'' or ''conventionally insulated systems''{{strike| , provided || 2022-October-28 }}
 +
<ol>
 +
<li>{{strike| the penetration flashing above the base flange is additionally flashed with an accepted liquid flashing system, to isolate the flashing from standing water, and || 2022-October-28 }} {{hilite | are permissible provided the base opening of the vent does not exceed 0.126 m<sup>2</sup> (196 in.<sup>2</sup>) || 2023-October-28 }}, and
 +
<li>shall be field-wrapped with roof membrane specified by the ''manufacturer'' for flashing (non-proprietary membrane-compatible coated flashings are not permissible), or
 +
<li>{{hilite | shall be coated with a liquid flashing system conforming to the application requirements in this Article, when || 2023-October-14 }}
 +
<ol>
 +
<li>{{hilite | the roof is sloped less than 1:50 (1/4” in 12”), || 2023-October-28 }}
 +
<li>{{hilite | the flashing is located in a valley, or || 2023-October-28 }}
 +
<li>{{hilite | the flashing will be regular exposed to or submerged in water. || 2023-October-28 }}
 +
</ol></li>
 +
</ol></li>
 +
<li>All galvanized penetration flashings or vents specified for use in a ''protected roof system'' or ''modified protected roof system'' shall not be installed at the ''drainage plane'' and instead must be located on ''curbs'' no less than 203.2 mm (8") in height above the ''finished roof system surface''.
 +
{{strike| <li>{{hilite | Galvanized surfaces must be prepared in keeping with the ''manufacturer’s'' published requirements. || 2023-June-16 }} || 2022-October-28 }}
 +
<li>{{hilite |A liquid flashing system applied to flashings and vents|| 2021-February-7 }}
 +
<ol>
 +
<li>may be a 2-component PMMA system or a single-component liquid flashing system,
 +
<li>{{hilite |must be listed in [[Division_C | Division C]] and acceptable to the '''''Guarantor''''' for this application,
 +
<li>shall be acceptable to the membrane manufacturer|| 2021-February-7 }},
 +
<li>{{hilite | shall be applied evenly and with straight lines|| 2021-February-7 }},
 +
<li>must extend up the sides of the vent or flashing at least 101.6 mm (4") above the ''finished roof system surface'', and
 +
<li>{{hilite |must cover the edge of the sheet membrane where it forms a seal with the flashing|| 2021-October-30 }}.
 +
</ol></li>
 +
</ol></li>
 +
 
 +
====12.3.2.3. Separation Between Penetration Flashings====
 +
 
 +
<ol>
 +
<li>Penetrations {{hilite | on new construction ''projects''|| 2020-July-3 }} must be separated from
 +
<ol>
 +
<li>other penetrations, {{strike| drains, || 2023-June-15 }} curbs, walls, or changes in plane so that the space between flashings for these details is at least 304.8 mm (12") (this is measured between openings or the edge of a detail and excludes the flashing flange){{strike| ; {{hilite | the exception to this requirement is customized penetration flashings designed for multiple individual or clustered penetrations. || 2023-June-16 }} || 2023-June-15 }}, and
 +
<li>{{hilite | ''roof drains'' at least 457.20 (18") (Also see || 2024-June-15 }} [[#11.1.3.2. Roof Drain Function and Location | Article 11.1.3.2.]]{{hilite |) || 2024-June-15 }}.
 +
</li></ol>
 +
{{strike| {{hilite | Penetrations that are closer together than the allowable minimum distance must be supported by a written Variance issued by the '''''Guarantor'''''. || 2023-June-16 }} || 2023-June-15 }}
 +
<li>{{hilite | When the separation between penetration flashings does not conform to the minimum spacing requirements, the application options described in || 2024-June-15 }} [[#12.3.2.1. General Requirements for Flashing Penetrations | Article 12.3.2.1.]] {{hilite | must be followed || 2024-June-15 }}.
 +
</li></ol>
 +
 
 +
====12.3.2.4. Curbs, Sleepers, and Equipment Pads====
 +
 
 +
<ol>
 +
<li>Sheet membrane flashing for ''curbs'' must provide continuous waterproofing from the roof field up the vertical plane, at least 203.2 mm (8”) above the ''finished roof system surface'' and shall conform to the requirements in [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]], unless otherwise specified or permitted in this Part; waterproofing of equipment installed on a curb (i.e., isolators and other mounts) is the responsibility of others.
 +
<li>{{hilite | ''Curb'', sleeper, or equipment pad sheet membrane flashing || 2020-October-22 }}
 +
<ol>
 +
<li>{{hilite | shall be fully adhered to its substrate,|| 2020-October-22 }}
 +
<li>{{hilite | must lap onto the field membrane by at least 152.4 mm (6"), or extend at least 50.8 mm (2") past perimeter mechanical fastener plates installed on the field, whichever is greater,|| 2020-October-22 }}
 +
<li>{{hilite | must be carried up a vertical surface, above the ''finished roof system surface'', at least 203.2 mm (8") (the exception to this requirement is fully-enveloped sleepers or equipment pads),|| 2020-October-22 }}
 +
<li>{{hilite | must be hand rolled with a membrane manufacturer’s accepted roller, and|| 2020-October-22 }}
 +
<li>{{hilite | shall be secured to the substrate by the ''Contractor'' where membrane terminates on a vertical substrate. || 2020-October-22 }}
 +
</ol></li>
 +
<li>All inside and outside corners of sheet membrane-flashed ''curbs'' or ''walls'' must be reinforced with membrane corner details or seam transition covers
 +
<ol>
 +
<li>wherever the membrane flashing changes planes (i.e., vertical to horizontal), and
 +
<li>installed in accordance with the manufacturer’s published instructions.
 +
</ol></li>
 +
<li>Reinforced liquid membrane flashing systems shall conform to the requirements in [[#12.3.2.6. Liquid Membrane Flashing | Article 12.3.2.6.]], and may be used only
 +
<ol>
 +
<li>when approved by the ''manufacturer'',
 +
<li>where sheet membrane applications are not practicable (i.e., complex geometry), or
 +
<li>where the top edge of membrane plies must be terminated on a vertical surface and other means of termination are not practicable or even possible (See also [[#12.3.2.6. Liquid Membrane Flashing | Article 12.3.2.6.]]).
 +
</ol></li>
 +
<li>Sleepers or equipment pads that are completely sealed (enveloped) with sheet membrane must be at least {{hilite | 101.6 mm (4") in height above the|| 2021-February-7 }} ''finished roof system surface'', {{hilite | but when fully enveloped sleepers or equipment pads are capped with ''linear metal flashing'', they must be at least 127 mm (5") in height above the ''finished roof system surface''|| 2021-February-7 }} to provide sufficient height for exposed fasteners.
 +
<li>All penetrations through the top surface of {{hilite | a sleeper or equipment pad|| 2021-February-7 }} must be sealed using
 +
<ol>
 +
<li>{{hilite | a compression sealant between the membrane and equipment supports|| 2021-February-7 }}, and
 +
<li>{{hilite | a universal sealant applied around the edges of equipment supports|| 2021-February-7 }}.
 +
</li></ol>
 +
<li>Equipment ("housekeeping") pads placed on top of the ''finished roof system surface'' and supporting combined loads
 +
<ol>
 +
<li>less than 90 kg (200 lbs) must be separated from the membrane with a bond-breaking layer (i.e., XPS insulation), and
 +
<li>greater than 90 kg (200 lbs) must be waterproofed to conform to the requirements for structural sleepers or equipment pads in this Section.
 +
</ol></li>
 +
</ol></li>
 +
 
 +
====12.3.2.5. Reserved====
 +
 
 +
====12.3.2.6. Liquid Membrane Flashing====
 +
 
 +
<ol>
 +
<li>{{hilite | Any liquid flashing system shall be used only when permitted by the ''manufacturer'', and it's use shall conform to the permissible applications in this Article. || 2023-June-16 }}
 +
<li>Two-component fleece-reinforced catalyzed polymethyl methacrylate (PMMA) and polyurethane methyl methacrylate (PUMA) liquid membrane flashing systems must be accepted by the '''''Guarantor''''' and listed in [[Division_C | Division C]], and
 +
<ol>
 +
<li>may be used
 +
<ol>
 +
<li>{{hilite | on the ''drainage plane''|| 2021-February-7 }},
 +
<li>where sheet membrane flashing may not be practical or even possible,
 +
<li>{{hilite | to terminate the top edge|| 2021-February-7 }} of sheet membrane flashing,
 +
<li>{{hilite | for sheet membrane reinforcement (i.e., at corners)|| 2021-February-7 }},
 +
<li>{{hilite | where abrasion resistance is desirable|| 2021-February-7 }},
 +
<li>{{hilite | where resistance to contamination of sheet membrane is necessary|| 2021-February-7 }}, or
 +
<li>{{hilite | where the ''Design Authority'' specifies its application. || 2023-June-16 }}
 +
</ol></li>
 +
<li>must be compatible with the primary sheet membrane flashing,
 +
<li>shall be applied to a properly prepared substrate, which must be clean, dry, free of contaminants, and primed, all as required by the ''manufacturer'' in their published instructions,
 +
<li>must be applied within masked boundaries to produce clean, straight, plumb edges, and
 +
<li>shall be applied to ensure that
 +
<ol>
 +
<li>the rate of application conforms to the ''manufacturer's'' published instructions, unless superseded by this Standard,
 +
<li>the base coating of catalyzed liquid membrane resin evenly and fully covers the masked area,
 +
<li>the manufacturer’s reinforcement fleece {{hilite | is cut to|| 2021-February-7 }} cover the masked area, to within 4.76 mm (1/8”) of all edges,
 +
<li>the fleece is fully embedded in, and saturated with, the based coating of resin, and
 +
<li>the fleece is evenly and thoroughly coated with a second application of catalyzed liquid membrane resin, covering the masked area.
 +
</ol></li>
 +
</ol></li>
 +
<li>Where a fleece-reinforced 2-component catalyzed polymethyl methacrylate (PMMA) liquid membrane flashing system is used to terminate sheet membrane on the vertical plane, the liquid membrane flashing system must overlap the sheet membrane, and it must extend onto the vertical substrate above the sheet membrane, by no less than 50.8 mm (2") (Ref. Figure 12.3.2.-B).
 +
<li>Fleece-reinforced 2-component catalyzed polymethyl methacrylate (PMMA) liquid membrane flashing system that is used as a substitute for sheet membrane flashing must be carried up a vertical plane at least 203.2 mm (8”), and no less than 203.2 mm (8") onto the horizontal field plane ({{hilite | See '''Figure 12.3.2.6.-A'''|| 2025-October-25}}).
 +
<li>{{hilite | Single-component polyurethane and silicon-based liquid membrane flashing ''system''|| 2021-February-7 }}
 +
<ol>
 +
<li>must be accepted by the '''''Guarantor''''', acceptable to the ''manufacturer'', and shall be listed in [[Division_C | Division C]],
 +
<li>{{hilite | may be used|| 2021-February-7 }}
 +
<ol>
 +
<li>{{hilite | to coat galvanized flashings used in the water plane, provided the application follows the requirements in [[#12.3.2.2. Galvanized Penetration Flashings | Article 12.3.2.2., "Galvanized Penetration Flashings"]]|| 2021-February-7 }},
 +
<li>{{hilite | to flash details more than 101.6 mm (4”) above the water plane, that cannot be sealed with sheet-type membranes|| 2021-February-7 }}, or
 +
<li>{{hilite | to seal pre-curb dowels (see [[#14.3.2.7. Structures and Equipment | Article 14.3.2.7.]])|| 2021-February-7 }}.
 +
</ol></li>
 +
<li>{{hilite | must not be used in the ''drainage plane'', or to reinforce membranes against abrasion|| 2021-February-7 }},
 +
<li>{{hilite | must be applied in two cured coats, unless otherwise permitted in this Standard|| 2021-February-7 }}, and
 +
<li>{{hilite | must be fleece-reinforced between coats where|| 2021-February-7 }}
 +
<ol>
 +
<li>{{hilite | the application is considered permanent, || 2023-June-16 }}
 +
<li>{{hilite | a change in plane (angle) occurs|| 2021-February-7 }}, or
 +
<li>{{hilite | there is a joint between two supports and the liquid membrane must serve as a bridge|| 2021-February-7 }}.
 +
</ol></li>
 +
</ol></li>
 +
<li>{{hilite | Accessory PMMA detailing products|| 2021-February-7 }}
 +
<ol>
 +
<li>must be accepted by the '''''Guarantor''''', acceptable to the ''manufacturer'', and listed in [[Division_C | Division C]],
 +
<li>{{hilite | must be|| 2021-October-30 }} reinforced with chopped or loose fibres,
 +
<li>{{hilite | shall not be used as a substitute for fleece-reinforced 2-component PMMA systems, where these are required or exclusively permitted|| 2021-February-7 }},
 +
<li>{{hilite | must be used at locations  101.6 mm (4”) or more above the ''drainage plane''|| 2021-February-7 }}, {{hilite | except where complex details, such as bolt heads, cannot be properly sealed with a fleece-reinforced 2-component PMMA system|| 2021-October-30 }}, and
 +
<li>{{hilite | must not be used where movement is expected|| 2021-February-7 }}.
 +
</ol></li>
 +
</ol></li>
 +
<br>
 +
::{|
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 12.3.2.6.-A Application Requirements for PMMA on Roof Penetration''' || 2025-October-25 }}<br>{{hilite | Forming Part of Sentence 12.3.2.6.(4) || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 
|-
 
|-
| [[File:PARS Illustration - Option 4 (SMALL).jpg|class=img-responsive | link=https://rpm.rcabc.org/images/3/32/PARS_Illustration_-_Option_4_%28SMALL%29.jpg | 400 px |Figure 7.2d]]
+
| [[File:Figure 12.3.-B (Generic).jpg |link=https://rpm.rcabc.org/images/7/75/Figure_12.3.-B_%28Generic%29.jpg | 400 px]]
 
|}
 
|}
</div>
+
 
</div>
+
====12.3.2.7. Railings, Ladders, and Other Attached Structures====
<div class="col-md-12">
+
(See also Construction Detail [[SBS Railing | "Railing"]])
 +
 
 +
<ol>
 +
<li>Fasteners installed to secure railings, ladders, and other structures to the vertical face of walls must be located at least 88.9 mm (3-1/2") above the ''finished roof surface''.
 +
<li>Railings, ladders, and other structures mounted on a waterproofed horizontal substrate that is part of the ''roof assembly'' (i.e., on top of a parapet) shall be fully flashed around each base with a fleece-reinforced liquid membrane flashing material, unless directed otherwise by a written Variance issued by the '''''Guarantor''''', using a product that is
 +
<ol>
 +
<li>suitable for use in the ''drainage plane'',
 +
<li>applied in keeping with the requirements in [[#12.3.2.6. Liquid Membrane Flashing | Article 12.3.2.6.]], and
 +
<li>compatible with roofing membranes installed on the substrate.</span>
 +
</li></ol>
 +
<li>Railings, ladders, and other structures shall not direct water into a ''roof system'' by means of weep holes or the method of fastening.
 +
</li></ol>
 +
 
 +
====12.3.2.8. Sealant Pockets====
 +
 
 +
<ol>
 +
<li><span class="recommended">Pourable sealant pockets should be used only when sealing penetration with sheet membranes or reinforced liquid membrane flashing is impractical</span>.
 +
<li>{{hilite | Sealant pockets must be|| 2020-July-3 }}
 +
<ol>
 +
<li>{{hilite | at least 50.8 mm (2”) deep|| 2020-July-3 }}, and
 +
<li>{{hilite | large enough to provide at least 25.4 mm (1”) of fillable space on all sides of the penetration|| 2020-July-3 }}.
 +
</li></ol>
 +
<li>When pourable sealant pockets are installed,
 +
<ol>
 +
<li>the penetration surfaces must be properly prepared following the sealant manufacturer’s instructions, {{hilite | to ensure a good bond between the penetration and the sealant|| 2020-July-3 }},
 +
<li>only the membrane manufacturer’s approved proprietary UV-stable urethane-based structural sealants may be used to fill sealant pockets,
 +
<li>the sealant must be crowned to shed water,
 +
<li>the sealant pocket shall be sealed to the roof membrane following requirements published elsewhere in this Standard, and
 +
<li>a site-formed non-bituminous flexible roof membrane storm collar must be fitted and secured to the penetration with stainless steel clamps.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
<hr>
 +
<div id=PART_13></div>
 +
 
 +
=Part 13 - Linear Metal Flashing=
 +
==Section 13.1. Design==
 +
===13.1.1. General===
 +
====13.1.1.1. Scope====
 +
 
 +
<ol>
 +
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
 +
</li></ol>
 +
 
 +
====13.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
 +
 
 +
<ol>
 +
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>{{hilite | ''Drip edge'' means the bent (kicked-out) hemmed edge of a linear metal flashing, measuring at least 19.05 mm (3/4") and angled no more than 30° from vertical ("Architectural Sheet Metal Manual" published by the Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA), Sixth Ed.: p. 2.3); it is used to direct dripping water away from the face of the metal flashing or the materials it is protecting, such as a wall. A drip edge may be fabricated on any linear metal flashing but is commonly used on coping (parapet cap) and counter-flashing (also see the Glossary for a colloquial use of the term). || 2023-June-16 }}
 +
<li>{{hilite | ''Hemmed edge'' means an edge of a ''linear metal flashing'' that is folded onto itself (bent 180°), to render a smooth (not raw or sharp) finish (this is sometimes referred to as a "safety edge"). || 2023-June-16 }}
 +
<li>{{hilite | ''Linear metal flashing''|| 2021-June-30 }} {{hilite | means flashings cut and shaped from flat metal stock, to redirect water at roof perimeters and edges, or to control the flow of water in valleys and drainage spillways.  ''Linear metal flashings'' also protect roof membranes from weathering and damage and provide an aesthetic finish to the ''roof system''|| 2021-June-30 }}.
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===13.1.2. Guarantee Term Requirements===
 +
====13.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
 +
 
 +
====13.1.2.2. RoofStar 15-Year Guarantee====
 +
 
 +
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>include only ''linear metal flashings'' fabricated from 24-guage stock (or thicker).
 +
</li></ol>
 +
</li></ol>
 +
 
 +
===13.1.3. All Systems===
 +
====13.1.3.1. Scope and Function====
 +
(See also the "Architectural Sheet Metal Manual" published by the Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA))
 +
 
 +
<ol>
 +
<li>''Linear metal flashings'' described in this Part and referenced elsewhere in this Standard
 +
<ol>
 +
<li>are considered necessary and integral to the scope of a ''project'' designed and constructed to qualify for a '''''RoofStar Guarantee''''',
 +
<li>do not perform a waterproofing function and therefore must be specified for use over membrane flashing, or designed to shed water onto a waterproofing or water-shedding primary material,
 +
<li>shall be new (reuse of any existing ''linear metal flashings'' is prohibited and may void the '''''Guarantee''''' (See [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2., "Limitations and Exclusions of Guarantee"]]), and
 +
<li>shall be ''Contractor''-fabricated to suit the ''project'' requirements or shall be listed in [[Division_C | Division C]] as materials pre-engineered and manufactured by a metal supplier.
 +
</li></ol>
 +
<li>The requirements in this Part apply almost entirely to ''Contractor''-fabricated linear metal flashings; consequently, RoofStar-accepted pre-engineered products accepted as systems are exempt from the requirements in this Part for metal gauge, profile, and securement, unless expressly stated otherwise.
 +
<li>''Linear metal flashings''
 +
<ol>
 +
<li>must be specified when UV-sensitive membranes require protection, or when membrane edges will otherwise be exposed to the sun, to water, or to physical damage, and
 +
<li><span class="principles">may be specified to cover ''parapet'' caps, sleepers, or curbs</span>
 +
<ol>
 +
<li><span class="principles">for aesthetic reasons</span>, or
 +
<li><span class="principles">to protect the membrane from damage resulting from maintenance (i.e., pressure washing of decks or pavers), or from foot traffic</span>.
 +
</li></ol>
 +
</li></ol>
 +
</li></ol>
 +
 
 +
====13.1.3.2. Information Required in Specifications====
 +
 
 +
<ol>
 +
<li>{{hilite | Subject to the requirements in this Standard,|| 2021-February-7 }} the ''Design Authority'' must specify
 +
<ol>
 +
<li>metal type, finish, and gauge,
 +
<li>seam types,
 +
<li>length of flashings (if different from the requirements in this Part), and
 +
<li>method of attachment (concealed or exposed fasteners).
 +
</li></ol>
 +
<li>Design drawings must detail metal flashing profiles desired for the ''project''.
 +
</li></ol>
 +
 
 +
====13.1.3.3. Securement====
 +
 
 +
<ol>
 +
<li>Securement of all ''linear metal flashings'' shall be specified in keeping with the application requirements in [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1.]]
 +
</li></ol>
 +
 
 +
====13.1.3.4. Gauge, Dimension Limitations, and Seams====
 +
 
 +
<ol>
 +
<li>Gauge, dimensions, slope, and length of ''linear metal flashings'' must be specified to conform to the requirements in {{hilite | '''Table 13.1.3.4.-A'''|| 2025-October-25 }} and [[#13.2.1.2. Sheet Metal Grade and Gauge | Article 13.2.1.2.]], but shall not be less than 26-Gauge.
 +
<li>Specified seam types shall conform to the requirements in {{hilite | '''Table 13.1.3.4.-B'''|| 2025-October-25 }} and [[#13.3.2.2. Seams | Article 13.3.2.2.]]
 +
</li></ol>
 
<br>
 
<br>
</div>
+
::::::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Table 13.1.3.4.-A.<br>Pre-finished Galvanized Steel Cap (Coping) Flashing (Gauge and Length Standards)''' || 2025-October-25 }}<br>{{hilite | Forming Part of Sentence 13.1.3.4.(1). || 2025-October-25 }}
 +
|-
 +
|}
 +
:{| class="wikitable" style="text-align: left; margin-left: 20pt; margin-right: auto; border: none;"
 +
|-
 +
! Horizontal Span !! Minimum<br>Slope !! Gauge !! Maximum Flashing<br>Segment Length !! Seam Options
 +
|-
 +
|  rowspan="2" style="vertical-align:centre;text-align:center;"  | Up to 304.8 mm (12") || rowspan="2" style="vertical-align:centre;text-align:center;"  | 2% || 26, 24 || rowspan="2" style="vertical-align:centre;text-align:center;"  | 3048 mm (120")|| S-lock or Standing Seam
 +
|-
 +
|  22+ || Butt Seams*
 +
|-
 +
|  rowspan="2" style="vertical-align:centre;text-align:center;"  | 304.8 - 914.4 mm (12" to 36") || rowspan="2" style="vertical-align:centre;text-align:center;"  | 4% || 24 || rowspan="2" style="vertical-align:centre;text-align:center;"  | 3048 mm (120")|| S-lock or Standing Seam
 +
|-
 +
|  22+ || Butt Seams*
 +
|-
 +
|  rowspan="2" style="vertical-align:centre;text-align:center;"  | 914.4 mm (36") or greater || rowspan="2" style="vertical-align:centre;text-align:center;"  | 6% || 24 || rowspan="2" style="vertical-align:centre;text-align:center;"  | 1219.2 mm (48")|| S-lock or Standing Seam
 +
|-
 +
|  22+ || Butt Seams*
 +
|}
 +
::''*'' Ref. [[#13.3.2.2. Seams | Article 13.3.2.2., "Seams"]]
 +
 
 +
::::::{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Table 13.1.3.4.-B.<br>Pre-finished Galvanized Steel Vertical Flashing (Gauge and Length Standards)''' || 2025-October-25 }}<br>{{hilite | Forming Part of Sentence 13.1.3.4.(2). || 2025-October-25 }}
 +
|-
 +
|}
 +
 
 +
:::::{|  class="wikitable" style="margin-left: 0pt; margin-right: auto;border-color:#E7E9E9;vertical-align:top;text-align:center;" 
 +
|-
 +
! Vertical Face !! Gauge!! Maximum Flashing<br>Segment Length !! Vertical Seam Options
 +
|-
 +
| Up to 152.4 mm (6") || 26 || 3048 mm (120") || S-lock
 +
|-
 +
| Up to 203.2 mm (8") || 24 || 3048 mm (120") || S-lock
 +
|-
 +
| Up to 304.8 mm (12") || 22+ || 3048 mm (120") || Butt Seams*
 +
|}
 +
::''*'' Ref. [[#13.3.2.2. Seams | Article 13.3.2.2., "Seams"]]
 +
 
 +
====13.1.3.5. Fit and Finish====
 +
 
 +
<ol>
 +
<li>Fit and finish of all ''linear metal flashings'' shall conform to the requirements in [[#13.2.2. Fabrication and Finish | Subsection 13.2.2.]]
 +
<li><span class="recommended">''Drip edges'' are not required but are strongly recommended for ''linear metal flashings'' installed around the outside perimeter of a building, to protect ''wall'' finishes</span>  (Ref. [[#13.2.2.1. Fabrication of Flashing | Article 13.2.2.1.]]).
 +
</li></ol>
 +
 
 +
====13.1.3.6. Cap Flashing, Counter-flashing, and Reglet Flashing====
 +
 
 +
<ol>
 +
<li>{{hilite | Cap (coping) flashings || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | are required for all ''parapets'' (including parapets on roof areas that are adjacent to each other), || 2024-January-31 }}
 +
<li>{{hilite | are optional for roof dividers that are fully enveloped with roofing membrane (Ref. || 2024-January-31 }} [[#10.3.6.2. Control Joints (Roof Dividers) | Article 10.3.6.2.]]), {{hilite | and || 2024-January-31 }}
 +
<li><span class="recommended">{{hilite | are recommended on roof dividers where the membrane may be susceptible to abrasion or mechanical damage || 2024-January-31 }}</span>.
 +
</li></ol>
 +
<li>{{hilite | All linear metal cap (coping) flashing specified for ''parapets'' shall indicate securement to a solid substrate || 2024-January-26 }}
 +
<ol>
 +
<li>{{hilite | at every seam, using S-locks or standing seam clips (Ref. || 2024-January-31 }} [[#13.3.2.2. Seams | Article 13.3.2.2., "Seams"]]),
 +
<li>{{hilite | beneath the outside vertical face of the flashing, using hidden clips (Ref. || 2024-January-31 }}[[#13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.3.2.3.]]), {{hilite | and || 2024-January-31 }}
 +
<li>{{hilite | on the roof-side (inside) face of the flashing. || 2024-January-31 }}
 +
</li></ol>
 +
<li>{{hilite | The use of exposed fasteners on the exterior face of cap (coping) flashing specified for ''parapets'' is not permissible. || 2024-January-31 }}
 +
<li>When the top surface of a ''wall'' exceeds 101.6 mm (4") in width, linear metal coping (cap) flashing must be specified with a minimum slope of 2% toward the roof-side of the parapet, to promote drainage (<span class="recommended">drainage toward the exterior of a building is <u>not recommended</u></span>).
 +
<li>All metal cap (coping) flashing must be designed with full, solid support.
 +
<li>When the specified cap flashing material is thicker or heavier than 18-gauge steel or aluminum, or it exceeds the permissible weight or gauge ranges for copper or zinc flashings, the seam and securement design must be submitted to the '''''Guarantor''''' for review prior to tender (See [[#13.3.2.2. Seams | Article 13.3.2.2.]] concerning flat butt seams).
 +
</li></ol>
 +
 
 +
====13.1.3.7. Intersections with Other Assemblies====
 +
 
 +
<ol>
 +
<li>Where a ''parapet'' intersects with a ''wall'', the union must be designed to direct water to the roof, away from the outer surface of the ''wall'', using a metal saddle assembly in combination with the membrane requirements in [[#10.3.4.1. Parapets | Article 10.3.4.1.]] (Ref. [[#13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.3.2.3.]]).
 +
</ol></li>
 +
 
 +
==Section 13.2. Materials==
 +
(Ref. [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]] concerning limitations and exclusions for metal flashing.)
 +
 
 +
===13.2.1. Material Properties===
 +
====13.2.1.1. Manufacturing and Supply====
 +
 
 +
<ol>
 +
<li>{{hilite | ''Linear metal flashings'' must be new, manufactured and supplied by the ''Contractor'' or by an Associate Member of the RCABC, and must conform to the requirements published in this Part.|| 2022-February-5 }}
 +
</ol></li>
 +
 
 +
====13.2.1.2. Sheet Metal Grade and Gauge====
 +
 
 +
<ol>
 +
<li>A mill certificate must be provided by the ''Contractor'' when requested by the ''Design Authority''.
 +
<li>The following minimum gauges and/or weights of <u>sheet steel materials</u> apply to all ''linear metal flashings'' (the reference standard for gauges is USS REV (metric in mm)):
 +
<ol>
 +
<li>'''Galvanized steel''': minimum  0.50 mm (0.0196", 26-gauge) galvanized steel sheet, conforming to ASTM A653 / A653M-06 CS Type B, Z275 (G90) coating. Thickness tolerance as per ASTM A924/A924M-06 ±0.08 mm (0.003") for sheet widths not exceeding 1524 mm (60").
 +
<li>'''Stainless Steel''': minimum 0.38 mm (0.014", 28-gauge) stainless steel, Type 302, 304, 316, 2B finish to ASTM A167-82. Maximum thickness tolerance variation ± 0.04 mm (0.0015") based on 1219.2 mm (48") wide sheet.
 +
<li>'''Aluminum-Zinc alloy-coated steel''': minimum 0.50 mm (0.0196", 26-gauge) aluminum-zinc alloy coated steel sheet, conforming to ASTM A792/A792M-06 CS Type B, AZM150 (AZ50) coating. Thickness tolerance as per ASTM A924/A924M-06 ±0.08 mm (0.003") for sheet widths not exceeding 1524 mm (60").
 +
</li></ol>
 +
<li>The following minimum gauges and/or weights of <u>non-ferrous materials</u> apply to all ''linear metal flashings'':
 +
<ol>
 +
<li>'''Aluminum''': minimum 0.80 mm (0.032", 20-gauge) aluminum sheet, utility quality to CSA HA Series - 1975, plain or embossed finish. Maximum thickness tolerance variation ± 0.06 mm (0.0025") based on 1219.2 mm (48") wide sheet.
 +
<li>'''Copper''': minimum 0.56 mm (24-gauge; 0.0216", 16 oz.) copper sheet, cold rolled roofing copper to ASTM B370-81. Maximum thickness tolerance variation ± 0.09 mm (0.0035") based on 1219.2 mm (48") wide sheet.
 +
<li>'''Zinc''': minimum 0.80 mm (0.031") zinc Sheet conforming to European standard EN 988-1996. Maximum thickness tolerance variation ± 0.03 mm (0.0012").
 +
</li></ol>
 +
<li>{{hilite | Where a ''waterproofing system'' adjoins and "Architectural Sheet Metal System", ''linear metal flashings'' must be fabricated from 24-gauge steel stock|| 2021-June-30 }}.
 +
</li></ol>
 +
 
 +
====13.2.1.3. Fasteners====
 +
 
 +
<ol>
 +
<li>{{hilite | Fasteners must be|| 2021-June-30 }}
 +
<ol>
 +
<li>{{hilite | threaded screws, {{hilite | friction-type pins (i.e., for masonry or concrete), plug (inserts), || 2024-January-31 }}or rivets (where permitted), || 2023-October-28 }}
 +
<li>{{hilite | compatible with materials they contact, || 2023-October-28 }}
 +
<li>{{hilite | corrosion-resistant, || 2023-October-28}}
 +
<li>{{hilite | specified by the ''Design Authority'',|| 2021-June-30 }} and
 +
<li>{{hilite | appropriately sized, in both length and thread type, for the material to which they will be secured|| 2021-June-30 }}.
 +
</li></ol>
 +
<li>{{hilite | Nails are not acceptable as fasteners|| 2021-June-30 }}.
 +
<li>{{hilite | Notwithstanding the requirements in Sentence (1), threaded fasteners used to secure linear metal flashings || 2023-October-28 }}
 +
<ol>
 +
<li>{{hilite | in concealed locations must be at least No. 8, corrosion-resistant screw or expansion fastener with a low-profile head and must be compatible with both the metal flashing material and the substrate. || 2023-October-28 }}
 +
<li>{{hilite | in exposed locations must be at least No. 10., shall be gasketed (cladding screws), and must match the colour of the materials they fasten. || 2023-October-28 }}
 +
</li></ol>
 +
<li>{{hilite | When pre-engineered ''linear metal flashing systems'' are specified, fasteners provided by the manufacturer must be used|| 2022-February-5 }}.
 +
<li>{{hilite | Rivets shall be closed-end, dome-head type, and shall be used only for fastening together linear metal flashings. || 2023-October-28 }}
 +
</li></ol>
 +
 
 +
====13.2.1.4. Sealants====
 +
 
 +
<ol>
 +
<li>Sealants shall be
 +
<ol>
 +
<li>non-hardening high-quality butyl or polyurethane,
 +
<li>available in either gun grade or sealant tape form,
 +
<li>suitable for exterior use and able to resist the effects of weathering, and
 +
<li>compatible with, and able to adhere to, the materials to which they are applied.
 +
</ol></li>
 +
<li>Sealants shall conform to
 +
<ol>
 +
<li>CGSB 19-GP-5M, “Sealing Compound, One Component, Acrylic Base, Solvent Curing”,
 +
<li>CAN / CGSB-19.13, “Sealing Compound, One Component, Elastomeric, Chemical Curing”,
 +
<li>CGSB 19-GP-14M, “Sealing Compound, One Component, Butyl-Polyisobutylene Polymer Base, Solvent Curing”, or
 +
<li>CAN / CGSB-19.24, “Multi-Component, Chemical Curing Sealing Compound”.
 +
</ol></li>
 +
</ol></li>
 +
 
 +
===13.2.2. Fabrication and Finish===
 +
====13.2.2.1. Fabrication of Flashing====
 +
 
 +
<ol>
 +
<li>Linear metal flashings must be new, must conform to the requirements published in this Part, and shall be manufactured and supplied
 +
<ol>
 +
<li>by the ''Contractor'',
 +
<li>for the ''Contractor'' by another ''Contractor'' (RCABC Member), or
 +
<li>by an ''Associate Member'' of the RCABC.
 +
</ol></li>
 +
<li>Unless expressly accepted otherwise, all linear metal flashing fabricated by the ''Contractor'' shall conform to the requirements in this Part.
 +
<li>Specified drip edges must be broken (bent) outward from the face of the flashing by at least 30° and shall measure at least 19.05 mm (3/4”), extending from the break.
 +
<li>All ''linear metal flashing'', except those that are pre-engineered and expressly accepted by the RGC,
 +
<ol>
 +
<li>must be hemmed,
 +
<li>shall conform to the minimum requirements in Tables 13.1.-A,
 +
<li>shall incorporate seams conforming to the requirements in Table 13.1.-B, and
 +
<li>may not exceed the maximum length of 3000 mm (120”).
 +
</ol></li>
 +
<li>{{hilite |The vertical leg of any metal flashing that overlaps roofing material must be at least 76.2 mm (3") in height, exclusive of the drip or hemmed edge, when measured between each break {{hilite | and shall overlap the edge of a membrane (i.e., membrane flashing on a wall) by at least 25.4 mm (1”).|| 2024-January-31 }}|| 2021-June-30 }}
 +
<li>Metal edge flashing must be fabricated with
 +
<ol>
 +
<li>a flange measuring no less than 101.6 mm (4") in width,
 +
<li>a vertical drop and hemmed drip edge at least 50.8 mm (2"), and (When transitioning to a lower ''water-shedding systems''), and
 +
<li>a sloped drop of no less than 101.6 mm (4").
 +
</ol></li>
 +
<li>Metal edge flashing may be constructed with or without an upstand at the outside edge (Edge flashing intended as a drainage edge may perform best without an upstand).
 +
</ol></li>
  
<div id=A-3.1.4.2.></div>
+
====13.2.2.2. Pre-painted Finishes====
  
===='''A-3.1.4.2. Specifying a Tested Assembly'''====
+
<ol>
:''Tested Assemblies'' are ''roof assemblies'' that have been selected by the membrane ''manufacturer'', installed on a specific ''deck'' type, secured using one of three systems, and tested by an independent certified laboratory to determine the limits of the assembly’s ability to resist negative wind pressure (loads), or ‘wind uplift’.  Each of the three methods is expressed with an acronym:
+
<li>When a painted finish on ''linear metal flashing'' is specified, only SMP and PVDF pre-painted finishes are acceptable.
::[http://rpm.rcabc.org/index.php?title=MARS_Tested_Roof_Systems "MARS"], or "Mechanically Attached Roof Systems" – these ''systems'' are held in place only with mechanical fasteners that are installed at the membrane layer.
+
<li>Where ''Architectural Metal Roofing'' is installed, adjoining ''linear metal flashing'' must have the same finish as the metal panels.
::[http://rpm.rcabc.org/index.php?title=PARS_Tested_Roof_Systems "PARS"], or 'Partially Attached Roof Systems" – both mechanical fasteners and adhesives are used as a hybrid method of securement; the membrane is always adhered, using an applied adhesive or heat-welding.
+
</ol></li>
::[http://rpm.rcabc.org/index.php?title=AARS_Tested_Roof_Systems "AARS"], or 'Adhesive Applied Roof Systems" – these are membrane roofs secured only with adhesives or heat-welded components.
 
  
<div id=A-3.1.6.1.></div>
+
==Section 13.3. Application==
 +
===13.3.1. Guarantee Term Requirements===
 +
====13.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
  
===={{hilite | '''A-3.1.6.1. Securement of Ballasted Roof Systems''' || 2024-October-20 }}====
+
<ol>
:Ballast used on ''protected membrane roof systems'' performs at least two critical functions. First, working in concert with a filtration material that holds insulation panels in their respective positions (rafting), ballast resists insulation flotation in the event water accumulates on the roof.  Secondly, ballast resists the effects of wind that can displace lightweight roofing insulation and filtration materials.  Each requires the appropriate weight by volume of ballast.
+
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
  
:ANSI-SPRI RP-4, "Wind Design Standard for Ballasted Single-ply Roofing Systems", provides some guidance, but its methods are based on wind speeds, not wind pressures; pressures, not wind velocity, are used in the applicable Canadian Codes. Therefore, the ''registered professional'' skilled in the work of Part 4 (Div. B) should use the ANSI/SPRI standard in conjunction with wind speeds listed in Table C-1, using wind loads calculated in accordance with [https://free.bcpublications.ca/civix/document/id/public/bcbc2018/bcbc_2018dbp4s41r2 Subsection 4.1.7. of Division B] (see the commentary on Wind Effects in Division B, Appendix C).  Where ballast is used to resist other structural loads in a building, the ''registered professional'' is responsible to review these, particularly in replacement roofing.
+
====13.3.1.2. RoofStar 15-Year Guarantee====
  
:[https://zz343f.a2cdn1.secureserver.net/wp-content/uploads/2018/05/Volume-40-Design-of-Loose-Laid-Gravel-Stone-Ballasted-Roofs.pdf?time=1692301713 Technical Bulletin Volume 40] published by the Canadian Roofing Contractors Association (CRCA) provides some guidance for using the ANSI/SPRI standard to determine ballast requirements.  Note that the exposure categories are different from those used in the Building Code.  Use the appropriate ballast size and weight guidelines based on roof zones and zone dimensions.
+
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', and shall
 +
<ol>
 +
<li>utilize only (minimum) 24-gauge ''linear metal flashing'' material.
 +
</li></ol>
 +
</li></ol>
  
:The ballast values published in Table 3.1. of Article 3.1.6.1. in the '''''RoofStar Guarantee''''' Standards are minimum values that will address many roof designs where the roof deck is air-impermeable (CRCA Technical Bulletin, Vol. 40).  If the roof deck is air-permeable, or if flow control drains are present (these may retain water on the roof, thereby introducing added buoyancy), the design may require higher ballast weights (and correspondingly higher volumes).  Ensure the structural design of the building can accommodate the necessary ballast weight, together with anticipated live loads, including those loads imposed on the building during construction.
+
===13.3.2. All Systems===
 +
====13.3.2.1. General Requirements for Linear Metal Flashing====
  
:While gravel ballast is commonly used on ''protected membrane roof systems'', wind scour can dislodge rocks from the roof, rendering them a public safety hazard. Consequently, the designer may need to design a roof with higher parapets (See Article 10.1.4.1., "Parapets"), or choose a different ballast material, such as concrete pavers.
+
<ol>
 +
<li>{{hilite | RoofStar-accepted pre-engineered securement ''systems'' must be secured according to the ''manufacturer’s'' specifications|| 2022-February-5 }}.
 +
<li>All ''linear metal flashing'' installed over an organic substrate (i.e., wood) shall be separated from the substrate with a suitable separation material (i.e., self-adhered bituminous membrane used as eave protection in a ''water-shedding roof system'').
 +
<li>Unless otherwise provided for in this Part, mechanical fasteners used to secure ''linear metal flashing'' {{hilite | or their clips || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | shall conform to the fasteners requirements in || 2024-January-31 }} [[#13.2.1.3. Fasteners | Article 13.2.1.3.]],
 +
<li>shall be spaced no more than 304.8 mm (12”) O.C.,
 +
<li>{{hilite | shall be firmly fastened, without distorting secured materials, || 2024-January-31 }}
 +
<li>{{hilite | must penetrate the substrate as specified in the screw manufacturer’s published minimum values, but shall nevertheless penetrate || 2024-January-31 }} {{strike| must penetrate the substrate as specified in [[#3.3.2.1. Securing Systems with Mechanical Fasteners | Article 3.3.2.1.]], and || 2023-January-26 }}
 +
<ol>
 +
<li>{{hilite | through the back surface of steel framing at least 19.05 mm (3/4"), || 2024-January-31 }}
 +
<li>{{hilite | into or through plywood so that screw threads engage its full thickness, excluding the unthreaded tip, and || 2024-January-31 }}
 +
<li>{{hilite | into solid substrate (i.e., dimensional lumber or concrete) at least 25.4 mm (1"), and || 2024-January-31 }}
 +
<li>must be installed at least 88.9 mm (3-1/2") above the ''finished roof system surface''.
 +
</li></ol>
 +
</li></ol>
 +
{{strike| <li>Where hidden metal clips are required, they must
 +
<ol>
 +
<li>be at least 24-gauge,
 +
<li>be fastened as close to the bottom edge (hook) as practical but must not be fastened further than a maximum of 76.2 mm (3") from the bottom edge (hook), and
 +
<li>engage drip or safety edges by a minimum of 12.7 mm (1/2").
 +
</li></ol>
 +
<li>'''Continuous concealed clips''' must be attached with fasteners spaced nor more than 304.8 mm (12") O.C.
 +
<li>'''Discontinuous concealed clips''' must
 +
<ol>
 +
<li>consist of a single clip, centred between the seams of each length of metal flashing,
 +
<li>measure at least 1/3 of the length of flashing it will secure but shall not be less than 101.6 mm (4") in length, and
 +
<li>be fastened with screws spaced no more than 304.8 mm (12") O.C.
 +
</li></ol> || 2023-January-26 }}
 +
<li>Canted edge metal flashing may be mechanically fastened from the outside face but shall not be face-fastened on the roof side of the flashing.
 +
<li>Sealants must be tooled to positively shed water.
 +
</li></ol>
  
:See also CRCA [https://zz343f.a2cdn1.secureserver.net/wp-content/uploads/2018/05/Volume-35-Ballast-For-Protected-Membrane-Roofing.pdf?time=1692301713 Technical Bulletin Volume 35] on ballast design requirements for protected membrane roofs.
+
====13.3.2.2. Seams====
 +
(The requirements in [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1., "General Requirements for Linear Metal Flashing"]], shall be read together with the following requirements.  See also [[#13.1.3.4. Gauge, Dimension Limitations, and Seams | Article 13.1.3.4.]])
  
<div id=A-3.1.7.2.></div>
+
<ol>
 +
<li>{{hilite | RoofStar-accepted pre-engineered ''linear metal flashing'' may be joined together using seams specified for the accepted flashing|| 2022-February-5 }}.
 +
<li>{{hilite | All ''linear metal flashing'' that is not pre-engineered must be seamed together following the requirements set out in this Article|| 2022-February-5 }}.
 +
<li>All seams must allow for metal expansion and contraction.
 +
<li>The seam and securement design must be approved by the '''''Guarantor''''' when the specified cap flashing material
 +
<ol>
 +
<li>is steel or aluminum, and the material is thicker or heavier than 18-gauge, or
 +
<li>is copper and zinc, and the material thickness or weight exceeds the weight or gauge requirements in [[#13.2.1.2. Sheet Metal Grade and Gauge | Article 13.2.1.2.]]
 +
</li></ol>
 +
<li>{{hilite | '''Straight (linear) joints''' between lengths of ''linear metal flashing'' must be fully seamed using only an S-lock ({{hilite | '''Figure 13.3.2.2.-A'''|| 2025-October-25 }}) or Standing Seam ({{hilite | '''Figure 13.3.2.2.-B'''|| 2025-October-25 }}), but this requirement does not apply to|| 2021-October-30 }}
 +
<ol>
 +
<li>{{hilite | flashing fashioned from 22-gauge metal (or heavier)|| 2021-October-30 }}, or
 +
<li>{{hilite | the vertical face of any flashing that is concealed by a ''wall assembly'', counter-flashing, or equipment flange, in which case the vertical joint may be lap-seamed, provided the overlap|| 2021-October-30 }}
 +
<ol>
 +
<li>{{hilite | is no less than 101.6 mm (4”) when fully caulked in the lap|| 2021-October-30 }}, or
 +
<li>{{hilite | is no less than 152.4 mm (6”) when installed without caulking in the lap.|| 2021-October-30 }}
 +
</li></ol>
 +
</li></ol>
 +
<li>The top face (horizontal plane) of flashings that intersect at a corner (i.e., coping flashing) must be joined with a standing seam.
 +
<li>Where drip edges meet at an outside corner, the cut edges of the mitred joint must be mechanically connected (Closed with a "rat tail").
 +
<li>When the face of vertically-oriented flashing forms an '''outside corner''', and the height of the flashing
 +
<ol>
 +
<li>is greater than 101.6 mm (4”), the two flashings must be joined using only a standing seam.
 +
<li>is 101.6 mm (4”) or less, the two flashings must be joined using
 +
<ol>
 +
<li>a standing seam,
 +
<li>an S-lock, or
 +
<li>a lap joint, but the drip edges must be mechanically connected (Closed with a "rat tail").
 +
</li></ol>
 +
</li></ol>
 +
<li>When the face of vertically-oriented flashing forms an '''inside corner''', and the height of the flashing
 +
<ol>
 +
<li>is greater than 101.6 mm (4”), the two flashings must be joined using only a standing seam.
 +
<li>is 101.6 mm (4”) or less, the two flashings must be joined using
 +
<ol>
 +
<li>a standing seam, or
 +
<li>a flat overlapped seam.
 +
</li></ol>
 +
</li></ol>
 +
<li>Sealant applied to S-lock or standing seams is not a requirement in this Standard, but when it is specified
 +
<ol>
 +
<li>the sealant must be applied along the full length of the seam, and
 +
<li>any sealant that extrudes from the seam during the seaming process must be removed and discarded (See [[#1.3.2.2. Workmanship | Article 1.3.2.2., "Workmanship"]]).
 +
</li></ol>
 +
<li>'''Standing seams''' must incorporate clips when the seam is longer than 101.6 mm (4”), and the clips must be
 +
<ol>
 +
<li>fabricated from flat metal stock 24-gauge or heavier,
 +
<li>at least 38.1 mm (1-1/2”) wide,
 +
<li>spaced apart from each other no more than 203.2 mm (8”) O.C.,
 +
<li>embedded in an acceptable sealant, and
 +
<li>secured with at least 2 acceptable low-profile flat head screws.
 +
</li></ol>
 +
<li>'''S-locked seams''' must be secured through flashing tab (leaf) with at least one (1) acceptable low-profile flat head screw when the seam is longer than 101.6 mm (4”), but fasteners must not be spaced more than 203.2 mm (8”) O.C.
 +
<li>'''Flat butt seams'''
 +
<ol>
 +
<li>are permissible only for cap (coping) flashings, and only when the flashing is fabricated from steel or aluminum ranging in thickness from 22-Gauge to 18-Gauge (the same applies to the equivalents for copper and zinc sheet material, by gauge or weight), and
 +
<li>must have a hemmed front edge fabricated to hook onto a supporting saddle.
 +
</li></ol>
 +
<li>The saddle for flat butt seams must be
 +
<ol>
 +
<li>manufactured from the same material as the flashing,
 +
<li>formed to match the profile of the cap flashing,
 +
<li>fabricated with a hook along the front face,
 +
<li>secured to the parapet with screws,
 +
<li>installed to underlap the butt joint by at least 101.6 mm (4”) on either side,
 +
<li>seated in two parallel beads of un-tooled sealant or butyl tape, which must be applied between the saddle and flashing, on either side of the butt joint, to all three adjoining faces, and
 +
<li>secured to the cap flashing along both faces of the parapet (See [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1.]]).
 +
</li></ol>
 +
</li></ol>
 +
<br>
 +
{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 13.3.2.2.-A S-Lock, Double'''<br>Forming Part of Sentence 13.3.2.2.(5)<br><small>(Click to expand illustration)</small> || 2025-October-25 }} || colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 13.3.2.2.-B Standing Seam'''<br>Forming Part of Sentence 13.3.2.2.(5)<br><small>(Click to expand illustration)</small> || 2025-October-25 }}
 +
|-
 +
| [[File:MF - S-Lock, Double.png | link=https://rpm.rcabc.org/images/b/b6/MF_-_S-Lock%2C_Double.png | 300 px]] || [[File:MF - Standing Seam.png | link=https://rpm.rcabc.org/images/a/a3/MF_-_Standing_Seam.png | 300 px]]
 +
|}
  
===='''A-3.1.7.2. Partial Roof System Replacement'''====
+
====13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing====
:When a ''roof system'' is partially replaced, it is incumbent upon the ''Design Authority'' to determine the reliability of the materials left ''in situ'', to which new materials will be secured. Often, the integrity of the connections between constituent materials in an ''in-situ'' assembly may be difficult if not impossible to ascertain, so that adhering new materials seems dubious at best (Ref. the "chain of connectivity" concept (NRC), which simply refers to both the "adhesive" and "cohesive" properties that bind adjacent materials together in a ''roof assembly''). When determining the integrity of existing materials connections is difficult or impossible, using mechanical fasteners may be the best reliable method for securing new materials to an existing ''roof assembly''.
+
(The requirements in [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1., "General Requirements for Linear Metal Flashing"]], shall be read together with the following requirements)
 +
<ol>
 +
<li>Cap (coping) flashings must be
 +
<ol>
 +
<li>{{hilite | solidly || 2024-January-31}} and fully supported {{strike| by a substrate || 2023-January-26 }},
 +
<li>{{hilite | separated from organic materials (i.e., wood) with roofing membrane, || 2024-January-31 }}
 +
<li>joined using standing seams or S-locks (Ref. [[#13.3.2.2. Seams | Article 13.3.2.2.]]), and
 +
<li>{{hilite | secured against displacement by wind. || 2024-January-31 }}
 +
{{strike| <li>secured on the outside face with hidden clips (exposed fasteners are not permitted),
 +
<li>secured on the inside face with a hidden clip, or with cladding fasteners, and
 +
<li>joined using standing seams or S-locks, wherever the flashing face is exposed to the weather, unless otherwise provided for in this Part (See also [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1.]]). || 2023-January-26 }}
 +
</li></ol>
 +
<li>{{hilite | In addition to the requirements in Sentence (1), cap (coping) flashing installed on ''parapets'' must be secured || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | beneath the outside vertical face of the flashing with hidden clips that hook into the ''drip edge'' by at least 12.7 mm (1/2") (Ref. || 2024-January-31 }} [[#13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.3.2.3.]]; exposed fasteners are not permitted), {{hilite |and || 2024-January-31 }}
 +
<li>{{hilite | along the roof-side face of the flashing, using either hidden clips or cladding fasteners (the method used shall be what is specified by the ''Design Authority''). || 2024-January-31 }}
 +
</li></ol>
 +
<li>{{hilite | Unless otherwise permitted in this Standard or by a written Variance from the '''''Guarantor''''', hidden clips shall be secured to the vertical face of a ''parapet wall'' and shall not be mechanically attached to the top of the coping. || 2024-January-31 }}
 +
<li>{{hilite | In addition to the requirements in Sentence (1), cap (coping) flashings installed on roof dividers and fire separation walls (Ref.|| 2024-January-31 }} [[#10.3.4.4. Fire Separations | Article 10.3.4.4.]])
 +
<ol>
 +
<li>{{hilite | may be face-fastened, provided the roof divider or fire separation wall is less than 1 m (39") tall, but || 2024-January-31 }}
 +
<li>{{hilite | shall be secured with hidden clips on both sides when the roof divider or fire separation wall exceeds a height of 1 m. || 2024-January-31 }}
 +
</li></ol>
 +
<li>{{hilite | When using exposed screws to secure cap (coping) flashing is permissible, screws shall be located no more than 25.4 mm (1") above the break for the ''drip edge'' and provision shall be made for metal expansion and contraction. || 2024-January-31 }}
 +
<li>{{hilite | Where hidden metal clips are required, they must || 2024-January-31 }}
 +
<ol>
 +
<li>{{hilite | be at least 24-gauge, || 2024-January-31 }}
 +
<li>{{hilite | be fastened as close to the bottom edge (hook) as practical but must not be fastened further than a maximum of 76.2 mm (3") from the bottom edge (hook), and || 2024-January-31 }}
 +
<li>{{hilite | engage drip or safety edges by a minimum of 12.7 mm (1/2"). || 2024-January-31 }}
 +
</li></ol>
 +
<li>{{hilite | '''Continuous concealed clips''' must be attached with fasteners spaced nor more than 304.8 mm (12") O.C. || 2024-January-31 }}
 +
<li>{{hilite | '''Discontinuous concealed clips''' must || 2024-January-31}}
 +
<ol>
 +
<li>{{hilite | consist of a single clip, centred between the seams of each length of metal flashing, || 2024-January-31 }}
 +
<li>{{hilite | measure at least 1/3 of the length of flashing it will secure but shall not be less than 101.6 mm (4") in length, and || 2024-January-31 }}
 +
<li>{{hilite | be fastened with screws spaced no more than 304.8 mm (12") O.C. || 2024-January-31 }}
 +
</li></ol>
 +
<li>Fasteners used to secure any cap, counter, or base flashing must be evenly spaced between seams along each length of flashing, and shall be
 +
<ol>
 +
<li>no fewer than three (3) fasteners for every 3048 mm (120") length of metal flashing, or
 +
<li>two (2) fasteners for every 2438.4 mm (96") length of metal flashing.
 +
</li></ol>
 +
<li>When cap (coping) flashings span widths greater than 304.8 mm (12”), and a flat butt seam is specified, the cap flashing must be riveted to the saddle to ensure adequate securement, and the rivets must be no further apart than 203.2 mm (8”).
 +
<li>Parapets that intersect a wall must be flashed with a metal saddle flashing, as shown in the "Construction Details for Linear Metal Flashings" ([[Division_D | Division D]]).
 +
<li>When the outside face of a cap flashing is concealed by a wall assembly, only the outside face may be lap-seamed, provided the overlap is no less than 101.6 mm (4”) and the overlapping metal is embedded in mastic.
 +
<li>Counter-flashing must be secured to the vertical face, with fasteners or a reglet.
 +
<li>Counter-flashing and termination bars installed as primary securement or protection of membrane flashing
 +
<ol>
 +
<li>must be hemmed at the top edge and bent (broken) outward from the face of the wall by at least 45°, to form a groove for sealant (The hem shall measure at least 15.88 mm (5/8”) when measured from the break),
 +
<li>shall be attached to the substrate with fasteners spaced no more than 304.8 mm (12”) O.C., and
 +
<li>must be sealed along the top groove with a continuous bead of acceptable sealant, tooled to shed water away from the wall.
 +
</li></ol>
 +
<li>A second counter-flashing (to cover a term bar or primary counter-flashing)
 +
<ol>
 +
<li>applied as a “surface reglet” must be hemmed, broken, and sealed, as described above in this Article, and
 +
<li>must be secured with fasteners spaced no more than 304.8 mm (12”) O.C., but this spacing may be increased to no more than 609.6 mm (24”) O.C., provided the flashing maintains continuous contact with the substrate (See [[#13.3.2.1. General Requirements for Linear Metal Flashing | Article 13.3.2.1.]]).
 +
</li></ol>
 +
<li>Base flashings
 +
<ol>
 +
<li>must “kick out” minimum 50.8 mm (2") over insulation and filter fabric (filter fabric must be tucked up behind the base flashing),
 +
<li>must be secured with fasteners spaced no more than 304.8 mm (12”) O.C., and
 +
<li><span class="recommended">may be fashioned as one piece, or as a 2-piece flashing that includes a lower, detachable segment to facilitate roof maintenance</span>.
 +
</li></ol>
 +
<li>''Linear metal flashing'' secured in a ''reglet'' (cut groove) must be
 +
<ol>
 +
<li>installed above the membrane flashing,
 +
<li>inserted at least 12.7 mm (1/2”),
 +
<li>friction-fitted within the ''reglet'' or secured on the exposed face with an acceptable fastener, and
 +
<li>sealed with a continuous bead of tooled gunnable sealant.
 +
</li></ol>
 +
<li>Where parallel and overlapping reglet flashings are used, the joints between flashing segments must be offset by at least 304.8 mm (12”), except at corners.
 +
</li></ol>
  
<div id=A-3.2.1.1.></div>
+
====13.3.2.4. Metal Edge Terminations====
  
===='''A-3.2.1.1. Substituting Materials Used in a Tested Assembly'''====
+
<ol>
:{{hilite |''Tested Assembly'' values (Dynamic Uplift Resistance) are predicated on a specific combinations (system) of materials.  Each material in the ''system'' possesses unique "cohesive properties" (internal strength and integrity) and is linked to the adjacent material in a particular way that may depend on a material’s unique "adhesive properties"|| 2021-October-30 }}.
+
<li>Metal edge terminations (including "gravel stop" flashings) are integrated into the membrane ''system'' and therefore shall be installed to conform to [[#10.3.4.2. Low Profile Edges | Article 10.3.4.2.]]
 +
</li></ol>
  
:{{hilite |The substitution of material components in a ''Tested Assembly'' is not contemplated by CSA-A123.21, but Annex F (a non-mandatory part of the CSA Standard, included at the back of the Standard document for information only) includes three decision processes for "MARS", "PARS" and "AARS" assemblies, to guide the ''Design Authority'' when a substitution is desirable or necessary (Ref. CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems", Annex F (informative) Component swap flow diagrams).  Use Annex F as a basis for guidance when material substitution is necessary|| 2021-October-30 }}.
+
====13.3.2.5. Canted Edges====
  
===<big><span class="reference">Notes to Part 4</span></big>===
+
<ol>
 +
<li>Metal flashings on canted edges must be face-fastened on the exterior face of the flashing or, when the height of the canted edge permits, at least 88.9 mm (3-1/2”) above the drainage plane.
 +
<li>Flashing must be secured with cladding fasteners, evenly spaced between seams along each length of flashing, using no fewer than
 +
<ol>
 +
<li>three (3) fasteners for every 3048 mm (120") length of metal flashing, or
 +
<li>two (2) fasteners for every 2438.4 mm (96") length of metal flashing.
 +
</li></ol>
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 5</span></big>===
+
<hr>
<div id=A-5></div>
+
<div id=PART_14></div>
  
===='''A-5 Deck and Wall Overlays'''====
+
=Part 14 - The Roof as a Platform=
:This Part addresses materials that are acceptable as overlays used to render a deck or wall surface suitable for roofing.  This Part supports the substrate preparation requirements in Parts 9 and 10.
+
==Section 14.1. Design==
 +
(This Part covers the design and installation requirements for roofs that support an ''overburden'', which may be structurally supported or directly supported by the ''roof assembly'')
  
<div id=A-5.1.3.1.></div>
+
(See [[Notes to PVC Standard#A-14.1. | Note A-14.1.]])
  
===='''A-5.1.3.1. Required Use of Overlays'''====
+
===14.1.1. General===
:A roof ''deck'' overlay (also called a system underlay) is installed as part of the ''roof system'' {{hilite | (usually uninsulated or ''conventionally insulated'') || 2025-October-25 }}, on the top surface of the roof ''deck'' but beneath other roofing materials. These products are most commonly affixed to steel ''decks'' to provide {{hilite | an even || 2025-October-25 }}, level surface for the roof membrane, to support air or vapour control layers, or to serve as a thermal barrier between the roof deck and combustible insulation. Roof ''deck'' overlay materials may also be applied to other types of supporting ''deck'' structures, depending on the roof design criteria.
+
====14.1.1.1. Scope====
  
:{{hilite | The thickness of a ''deck'' overlay may be determined by the Fire Code Consultant or be pre-determined in a ''Tested Assembly'' report, but when it is not, the ''Design Authority'' may be tempted to specify a thin product as a cost-saving measure.  Before doing that, the ''Design Authority'' should consider two key issues.  First, the thin overlay must provide more than minimum wind uplift resistance for the entire ''roof assembly''.  Therefore, select the appropriate ''deck'' overlay thickness based on the material's properties, in consultation with the ''registered professional'' skilled in the work of calculating wind loads and designing the securement of the ''roof assembly'' || 2025-October-25 }}.
+
<ol>
+
<li>The scope of this Part and the Standard shall be as described in [[Scope of RPM and Standards | Division A, Part 1]].
:{{hilite | Second, consider how long the overlay and the materials that cover it will remain exposed to construction activity before the rest of the ''roof system'' is installed (sometimes, the ''deck'' overlay and an applied air/vapour barrier material serves as a "temporary roof" structure to permit phased construction of other building elements).  Gypsum-based overlays may be more vulnerable than other materials to crushing, especially where the boards are thin and span the gaps between steel deck flutes.  Damage from construction activity may compromise the overlay's expected performance properties. When phased construction is expected and the deck overlay and a membrane may be left exposed for more than a few days or a week, consider specifying a thicker or more robust overlay panel || 2025-October-25 }}.
+
</li></ol>
  
===<big><span class="reference">Notes to Part 6</span></big>===
+
====14.1.1.2. {{strike| Definitions || 2024-October-23 }}{{hilite | Defined Terms || 2025-October-25 }}====
<div id=A-6></div>
 
  
===='''A-6 Air and Vapour Controls'''====
+
<ol>
:Part 6 is a boilerplate wording included in every Standard of the '''''RoofStar Guarantee Program''''', regardless of whether or how air and vapour controls are used in a ''roof assembly''.
+
<li>Words that appear in italics are defined in the [[Glossary | Glossary]].  Additionally, the following terms are used in this Part:
 +
<ol>
 +
<li>''Roof Coverings'' means (without limitation) gravel, wearing surfaces, ''Vegetated Roof Systems'', pavers, cast-in-place concrete, rubberized surfaces, broadly covering and directly superimposed on the ''roof assembly''.
 +
<li>''Structures and Equipment'' means structurally supported or portable objects including (without limitation) wood or composite decks and walkways, planters, "amenity spaces" (inclusive of furnishings, hot tubs, gazebos, pergolas, and play areas), nets and wind screens, photovoltaics, satellite equipment, light standards, lightning rods, sculptures, pools, and other water features.
 +
</li></ol>
 +
</li></ol>
  
:{{hilite | Air and vapour controls, whether manufactured as sheet products or as liquids, form a critical component of the suite of building enclosure systems used to regulate the movement of air and water vapour in and out of the building. Because continuity is critical not only within an ''assembly'' but also between assemblies, performance of air and vapour control materials is not covered by the '''''RoofStar Guarantee'''''; the '''''RoofStar Guarantee Program''''' is limited to the scope of a ''roof system'', and therefore it has no control over the construction or performance of adjoining assemblies, such as ''walls'', which may adversely impact the performance of the ''roof system''. Nevertheless, the choice of materials used in a ''roof system'' is still critical for its performance. Therefore, this Part prohibits certain materials because, from a constructability standpoint, they are difficult to seal (to achieve continuity) and are often fragile and prone to puncture during construction. Furthermore, this Part includes both design and construction requirements intended to achieve continuity, since the transfer of air and the movement of water vapour into the ''roof system'' can produce false leaks that undermine the objectives of the Standard. || 2023-June-16 }}
+
===14.1.2. Guarantee Term Requirements===
 +
====14.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
  
<div id=A-6.1.1.1.></div>
+
<ol>
 +
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
  
===='''A-6.1.1.1. Scope'''====
+
====14.1.2.2. RoofStar 15-year Guarantee====
:Air and vapour control layers, along with thermal barriers, water resistive barriers and water-shedding surfaces, serve to separate the outside environment from the interior environments of a structure. Continuous air control layers are perhaps the most critical. Codes in each jurisdiction, and the "2020 National Energy Code of Canada for Buildings" (NECB), require the selection and proper installation of “a continuous air barrier system comprised of air-barrier assemblies"..."to control air leakage into and out of the conditioned space” ("National Energy Code of Canada for Buildings", Part 3, Article 3.2.4.1., "General").
 
  
:'''Air control layers''' regulate and often prohibit the “flow of air through the building enclosure, either inward or outward” (''Guide for Designing Energy Efficient Building Enclosures'', '''Homeowner Protection Office'''). Controlling air flow into and out of conditioned spaces affects the performance of “thermally efficient enclosure assemblies” (ibid), impacts the potential for condensation in between materials, and directly influences rain water penetration of the building envelope.
+
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
  
:'''Vapour control layers''' regulate or prohibit the movement of water vapour from one space to another by means of diffusion. Consequently, these control layers are referred to as either vapour-permeable or impermeable. Diffusion is a slow process, in contrast to air movement, and its regulation is not always mandatory or even desirable.
+
===={{hilite | 14.1.2.3. RoofStar Vegetated Roof Guarantee || 2025-October-25 }}====
  
:Any references in this ''Manual'' to installation methodologies, and any construction details that show air and vapour control layers, are merely illustrative and not prescriptive.  Installers of continuous air and vapour control layer ''systems'' are urged to understand and comply with best practices for their application.
+
<ol>
 +
<li>To qualify for a '''''RoofStar Vegetated Roof Guarantee''''', the supporting ''roof assembly'' shall
 +
<ol>
 +
<li>comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''', '''''RoofStar 10-year Guarantee''''', or a '''''RoofStar 15-year Guarantee''''',
 +
<li>be acceptable to the manufacturer as support for a ''vegetated roof system'', and
 +
<li>comply with the related requirements in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”].
 +
</li></ol>
 +
</li></ol>
  
<div id=A-6.1.3.1.></div>
+
===14.1.3. All Systems===
 +
====14.1.3.1. Coverage and Limitations====
  
===='''A-6.1.3.1. Responsibility for Design'''====
+
<ol>
:Air and vapour control layer performance is not part of the '''''RoofStar Guarantee''''', and air and vapour control materials are not listed in [[Division C | Division C]].
+
<li>Coverage under the '''''RoofStar Guarantee''''' shall be as described in [[Guarantee#3.2.1.2._Limitations_and_Exclusions_of_Guarantee | Division A, Article 3.2.1.2.]]
 +
</li></ol>
  
:In some ''roof assembly'' designs, the required underlayment may serve as an air control layer, vapour control layer, or both; this is dependent upon the properties of the material to be used and will be subject to the designer’s modelling of the ''assembly''. Consult the Technical Data Sheets for suitable materials.
+
====14.1.3.2. Loads====
  
<div id=A-6.2.1.2.></div>
+
<ol>
 +
<li>The building structure must be designed to support any live loads specified by the Code having jurisdiction, including loads from any covering, amenity space, structure, or live loads superimposed upon the ''roof system''.
 +
<li>Roof assemblies
 +
<ol>
 +
<li>must be designed as a ''protected roof system'' when they cannot support the superimposed loads described above (See also [[#8.1.4.1. Use Over Sensitive Materials and Systems | Article 8.1.4.1.]]).
 +
<li>{{hilite | must be designed as a ''protected roof system'' when the roof covering is || 2025-October-25 }}
 +
<ol>
 +
<li>{{hilite | a ''semi-intensive vegetated roof system'', or || 2025-October-25 }}
 +
<li>{{hilite | an ''intensive vegetated roof system''  || 2025-October-25 }}(See [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.3.2._Permitted_Vegetated_Roof_Systems Article 1.1.3.2.], {{hilite | “RGC Standard for Vegetated Roofs”)|| 2025-October-25 }}.
 +
</li></ol>
 +
<li><span class="recommended">should be designed as a ''protected roof system'' when the ''roof covering'' or living (amenity) space</span>
 +
<ol>
 +
<li><span class="recommended">exceeds 152.4 mm (6”) in depth{{strike| (excluding any plants) || 2024-October-29 }}</span>,
 +
{{strike| <li><span class="recommended">is an intensive or semi-intensive ''Vegetated Roof System''</span>, || 2024-October-29 }}
 +
<li><span class="recommended">includes cast-in-place concrete surface</span>,
 +
<li><span class="recommended">is installed over a podium roof area adjacent to residential high-rise structures</span>,
 +
<li><span class="recommended">includes water features or pools</span>, or
 +
<li><span class="recommended">includes expansive terrace areas or play spaces</span>.
 +
</li></ol>
 +
</li></ol>
 +
<li>{{hilite | When the superimposed load is a ''vegetated roof system'', the design of the supporting ''roof assembly'' shall conform to the requirements in|| 2025-October-25 }} [[VRA Standard#1.1.3.1. Permitted Supporting Roof Assemblies | {{hilite | Article 1.1.3.1.]] || 2025-October-25 }} {{hilite | and || 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#1.1.3.2._Permitted_Vegetated_Roof_Systems {{hilite | Article 1.1.3.2.|| 2025-October-25 }}] {{hilite | of the “RGC Standard for Vegetated Roofs” and shall take into consideration the future loads from a mature, fully saturated ''vegetated roof''|| 2025-October-25 }}.
 +
<li><span class="principles">Structural supports (i.e., curbs) should be considered to bear heavier dead loads, to resist ''Specified Wind Loads'', or to secure the equipment during seismic events</span>.
 +
</li></ol>
  
===='''A-6.2.1.2. Prohibited Materials for RoofStar Guarantee'''====
+
====14.1.3.3. Securement of Roof Coverings, Structures, and Equipment====
:Constructability, and resistance to damage, heat, and to solvent-based products, are key properties of air and vapour control materials. While the '''''RoofStar Guarantee''''' does not extend coverage to air and vapour control materials, or to their performance (Ref. Note A-6, "Air and Vapour Controls"), leaks through or past damaged or poorly sealed materials can adversely affect the performance of the guaranteed ''roof system''. For this reason, both polyethylene plastic sheet products and bitumen-impregnated kraft paper are not permitted in a roof intended to qualify for a '''''RoofStar Guarantee'''''; both materials are easily damaged (punctured) during construction, and proper sealing of each material to itself and to adjoining materials is difficult.
 
  
===<big><span class="reference">Notes to Part 7</span></big>===
+
<ol>
<div id=A-7.1.3.1></div>
+
<li>The ''Design Authority'' is responsible to specify the appropriate securement design of roof coverings, structures, and equipment, to resist ''Specified Wind Loads''.
 +
<li>{{hilite | ''Vegetated roof systems'' shall be secured in keeping with the requirements of the|| 2025-October-5 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard {{hilite | “RGC Standard for Vegetated Roofs”] || 2025-October-5 }}.
 +
<li>Where structural securement is desirable or required,
 +
<ol>
 +
<li>structural supports must be fully waterproofed (curbs, sleepers, posts) and
 +
<li>the superimposed structure or equipment must be secured to the structural support at least 203.2 mm (8”) above the ''drainage plane''  (See [[#Part 12 - Penetrations and Curbs | Part 12,"Penetrations and Curbs"]], and [[#Part 3 - Securing the Roof Assembly | Part 3, "Securing the Roof Assembly"]]).
 +
</li></ol>
 +
</li></ol>
  
===='''A-7.1.3.1 Responsibility for Design'''====
+
====14.1.3.4. Design for Repairs and Renewal====
:{{hilite | Insulation materials rely on various standards for the determination of thermal resistance, which means that not all data can be easily compared. Furthermore, not all insulation products perform with consistent thermal resistance as temperature changes, and some insulation performance declines with age. Therefore, refer to the "Long-term Thermal Resistance" (LTTR) for each insulation product, in relation to the product's placement within the roof assembly and the anticipated outside and interior climates of the building. || 2023-June-16 }}
 
  
:{{hilite | Also see the "British Columbia Building Code", Division B, Part 10 (Ref. Div. B, Section 9.25., "Heat Transfer, Air Leakage and Condensation Control" for structures governed by Part 9), together with relevant requirements in Division A and Division C of the Building Code. || 2023-June-16 }}
+
<ol>
 +
<li><span class="principles">Each design should, without limitation, include consideration for</span>
 +
<ol>
 +
<li><span class="principles">the inevitability of roof repairs or replacement,</span>
 +
<li><span class="principles">access for maintenance</span>, and
 +
<li><span class="principles">material removal, storage, and replacement logistics</span>.
 +
</li></ol>
 +
</li></ol>
  
<div id=A-7.1.3.4.></div>
+
====14.1.3.5. Roof Membranes====
  
===='''A-7.1.3.4. Effective Thermal Resistance and Layering'''====
+
<ol>
:{{hilite | In warm seasons, the roof surface may reach temperatures higher than 85°C (185°F), affecting the performance and stability of some insulation. Consequently, the requirement which limits panel size in single-layer applications ensures that inevitable gaps between adjacent panels are kept to a minimum. Combining insulation types in a ''roof system'' may help mitigate these temperature swings and the consequence of thermal contraction. The ''Design Authority'' therefore must consider these variables when specifying materials and their installation. || 2023-June-16 }}
+
<li>Membranes must be selected for their ability to resist accidental puncture by human activity on the roof; the minimum puncture resistance must be at least 400 N (See Table 9.1. in [[#9.2.1.1. Membrane Composition, Thickness, and Selection | Article 9.2.1.1.]]).
 +
</li></ol>
  
:{{hilite | The "Long-Term Thermal Resistance" (LTTR) measurement of closed-cell insulation materials remains the standard by which insulation performance is measured. Published R-values should reflect the LTTR of the material. In Canada, two principal standards apply to the accurate measurement of thermal resistance: CAN/ULC-S770 ("Standard Test Method for Determination of Long-Term Thermal Resistance of Closed-Cell Thermal Insulating Foams") and CAN/ULC-S704.1 ("Standard for Thermal Insulation, Polyurethane and Polyisocyanurate, Boards, Faced"). || 2023-June-16 }}
+
====14.1.3.6. Membrane Protection====
  
<div id=A-7.1.4.2.></div>
+
<ol>
 +
<li>Membranes must be protected from damage incurred
 +
<ol>
 +
<li>during the construction of a building,
 +
<li>from normal use and occupancy of the roof, and
 +
<li>from maintenance of any installation on top of a ''roof system'', after the building has been commissioned.
 +
</li></ol>
 +
<li><span class="recommended">To prevent accidental damage and puncture from falling objects, ''conventional insulated systems'' at elevations lower than those designed for human occupancy should include a protective wearing course or, in the alternative, should be designed as a ''protected roof system''</span>.
 +
<li>Where membranes installed on vertical surfaces may be damaged from foot traffic or shifting coverings, they must be protected (i.e., with base metal flashing; ref. [[#13.1.3.6. Cap Flashing, Counter-flashing, and Reglet Flashing | Article 13.1.3.6.]]).
 +
</li></ol>
 +
</li></ol>
  
===='''A-7.1.4.2. Protection of Heat-sensitive Insulation'''====
+
====14.1.3.7. Membrane Integrity Testing and Electronic Leak Detection====
:{{hilite | Heat-sensitive insulation can be distorted and even damaged when absorbed solar radiation raises the temperature of the insulation above its published maximum service temperature rating (usually 70 - 75°C). Severe damage can reduce the thermal resistance of the insulation system; damaged panels have been known to contract, causing depressions and increasing gaps between adjacent panels. || 2023-June-16 }}
+
(See [[#1.1.3.3. Membrane Integrity Testing | Article 1.1.3.3.]] and [[#1.1.3.4. Electronic Leak Detection | Article 1.1.3.4.]])
  
:{{hilite | The requirement to use a layer of heat-resistant insulation on top of heat-sensitive insulation is based on a mathematical modeling of the buffering effects of different overlay strategies. While modeling showed some insulation overlay panels reduced some absorbed heat, none reduced heat below the service temperature of the insulation, and none provided sufficient margin to allow for high-heat weather events. Only heat-resistant insulation measuring at least 50 mm (2") thick offered the necessary level of protection to prevent insulation damage. || 2023-June-16 }}
+
====14.1.3.8. Drainage====
  
<div id=A-7.2.2.3.></div>
+
<ol>
 +
<li>Roofs designed as platforms to support ''roof coverings'', amenity spaces, or equipment must promote unimpeded drainage of storm or irrigation water.
 +
<li>{{hilite | The drainage of a ''roof assembly'' supporting a ''vegetated roof system'' shall be designed in coordination with the design requirements in the || 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard {{hilite | “RGC Standard for Vegetated Roofs” || 2025-October-25 }}].
 +
<li>Where a ''roof covering'' material naturally drains (i.e., gravel), no additional drainage design is required, but when it does not naturally drain, the design must incorporate a ''drainage plane'' on top of the completed ''roof system''.
 +
<li>''Overburden'' must be contained with drain guards, rigid barriers, and filter fabric (See also [[#11.3.2.3. Drain Protection Against Blockage | Article 11.3.2.3.]]).
 +
<li>To facilitate the adequate movement of water and minimize or prevent damming when non-structural supports are oriented perpendicular to (across) the direction of drainage, the design must
 +
<ol>
 +
<li>specify shorter supports, to a maximum length of 1219.2 mm (48"), and
 +
<li>incorporate drainage mats beneath supports longer than 1219.2 mm (48") in any direction.
 +
</li></ol>
 +
<li>Equipment installed on structural supports, or on top of the ''roof system'', must be spaced or located to promote access to drains, ease of maintenance, and worker or occupant safety.
 +
</li></ol>
  
===='''A-7.2.2.3. Polyisocyanurate Insulation'''====
+
====14.1.3.9. Filter Fabric====
:Since September 1, 2010, the RGC has excluded organic-faced polyisocyanurate insulation from the '''''RoofStar Guarantee Program''''', because of moisture-induced cupping and curling attributed to the composition of the facer material.  Only fibre-glass or acrylic facers are accepted by the '''''Guarantor''''' for use on roofs qualifying for a '''''RoofStar Guarantee'''''.
 
  
===<big><span class="reference">Notes to Part 8</span></big>===
+
<ol>
<div id=A-8.1></div>
+
<li>Filter fabrics are required when the roof supports
 +
<ol>
 +
<li>{{hilite | a ''vegetated roof system'' (See|| 2024-October-29 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#PART_6 {{hilite | Part 6 || 2025-October-25 }}] {{hilite | in the “RGC Standard for Vegetated Roofs”)|| 2025-October-25 }}{{strike| growing media and vegetation || 2024-October-29 }},
 +
<li>sand and other fine materials,
 +
<li>gravel with a diameter less than 12.7 mm (1/2”),
 +
<li>wet mortar or concrete, or
 +
<li>XPS insulation above the membrane (See [[Notes to PVC Standard#A-14.1.3.9. | Note A-14.1.3.9.]]).
 +
</li></ol>
 +
</li></ol>
  
===='''A-8.1 Design'''====
+
====14.1.3.10. Gravel====
:Insulation overlay boards are installed in most ''conventionally insulated systems'' to  
+
(See [[Notes to PVC Standard#A-14.1.3.10. | Note A-14.1.3.10.]])
:*protect ''heat-sensitive insulation'' materials from damage by heat and flame.
 
:*protect insulation materials from accidental impact.
 
:*provide dimensional stability to the ''roof system''.
 
:*distribute dead loads from heavy overburdens or equipment installed on top of the ''finished waterproofing system''.
 
:*ensure the membrane performs as it should.
 
:*provide a suitable substrate for membrane application.
 
  
:Insulation overlay boards may be mechanically attached or adhered, depending upon the insulation type and the design requirements of the entire ''roof assembly''.
+
<ol>
 +
<li>When {{hilite | smooth stone {{strike| gravel|| 2024-October-29 }} (aggregate rock) || 2025-October-25 }} is specified as the ''roof covering'' (different from ballast),
 +
<ol>
 +
<li>only washed gravel may be used, and
 +
<li>the design must include gravel guards around roof drains.
 +
</li></ol>
 +
<li>When the gravel used as a roof covering is crushed, or is smaller than 12.7 mm (1/2”),
 +
<ol>
 +
<li>a geotextile protection layer must be installed immediately above the roof membrane, and
 +
<li>the {{hilite | crushed || 2025-October-25 }} gravel must be deep enough to hold the geotextile protection layer in place.
 +
</li></ol>
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 9</span></big>===
+
====14.1.3.11. Wearing Surfaces====
<div id=A-9.1.3.3.></div>
+
(See also [[#9.1.3.4. Membrane Protection | Article 9.1.3.4.]] concerning wearing surfaces and drainage requirements)
  
===='''A-9.1.3.3. System Securement'''====
+
<ol>
:PVC membranes are fabricated as rolled sheets and, when specified for use on roofs, are normally designed for application only on ''Flat'' or ''Low Slope'' structural roof decks and come in a variety of thicknesses and surface finishes. They may be reinforced or unreinforced (each is for a particular application), and may each be applied in one or more ways.
+
<li>Any wearing surface may be installed on an ''uninsulated'' or ''conventionally insulated system'', provided
 +
<ol>
 +
<li>the compressive strength of the insulation will support it,
 +
<li>insulation is covered with a suitable overlay (See [[#8.1.4.1. Use Over Sensitive Materials and Systems | Article 8.1.4.1.]]),
 +
<li>the wearing surface does not bond with or touch the roof field membrane or membrane flashing, and
 +
<li>drainage of storm or irrigation water is not impeded.
 +
</li></ol>
 +
<li>When a wearing surface is specified,
 +
<ol>
 +
<li>it must incorporate measures to protect the roof membrane from damage,
 +
<li>perimeter membranes and penetrations must be protected from abrasion by the wearing surface,
 +
<li>the design must provide a drainage space below the wearing surface measuring at least 12.7 mm (1/2”) in depth, and
 +
<li>the design must provide a vertical drainage gap between the wearing surface and any openings.
 +
</li></ol>
 +
<li>When cast-in-place concrete is specified as the wearing surface (See [[Notes to PVC Standard#A-14.1.3.11. | Note A-14.1.3.11.]]), the design must conform to the other requirements in this Article, and the concrete must be separated from the membrane with
 +
<ol>
 +
<li>a bond-breaking material, such as a proprietary drainage mat or XPS insulation, and
 +
<li>filter fabric or a barrier material acceptable to the membrane manufacturer, able to prevent the concrete slurry from reaching the membrane.
 +
</li></ol>
 +
</li></ol>
  
:Common applications include:
+
====14.1.3.12. Vegetated Roof Systems====
:*'''Mechanically fastened''' (using self-drilling screws and load-distributing plates)
 
:**In-seam fastening
 
:**Induction welded
 
:**In-seam fastening
 
:**Bar and cover securement
 
:*'''Adhered'''
 
:**Self-adhering (SA) (using a proprietary adhesive film bonded to the membrane, SA membranes are often adhered with the help of a primer)</span>.
 
:**Adhesive-applied (using synthetic adhesives that are rolled or brushed onto the membrane and the substrate)</span>.
 
:**Hot bitumen adhered (sometimes referred to as 'hot-mopped', 'hot-applied' or simply 'mopped',  this application method is used with fleece-backed membranes)</span>.
 
:*'''Loose-laid and ballasted''' (not common with PVC, but permissible).
 
  
<div id=A-9.1.3.4.></div>
+
<ol>
 +
<li>{{hilite | ''Vegetated Roof Systems'' (VRS) must be designed to meet the requirements in the|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard {{hilite |“RGC Standard for Vegetated Roofs”|| 2025-October-25 }}]{{hilite |; this includes membrane protection, drainage, water retention materials, filter fabrics, etc.|| 2025-October-25 }}
 +
{{strike| to resist the ''Specified Wind Loads'', determined using the [https://nrc.canada.ca/en/research-development/products-services/software-applications/wind-load-calculators-roof-cladding-vegetated-roof-assembly "Wind Load Calculator for Vegetated Roof Assembly"] or, in the alternative, another method that is its equal or superior, for buildings up to 20 m (65') in height (Ref. [[#3.3.2.3. Securing Roofs with Overburden | Article 3.3.2.3.]]).
 +
<li>Where a ''Vegetated Roof Systems'' is specified as ballast, it may be installed by someone other than the ''Contractor'', but the coordination of work between the ''Contractor'' and other trades must be specified by the ''Design Authority'' to ensure the ''roof system'' is immediately and properly secured.
 +
<li>''Conventionally insulated systems'' may be used to support any type of ''Vegetated Roof System'', provided
 +
<ol>
 +
<li>the compressive strength of the insulation will support it,
 +
<li>the insulation in the ''roof system'' is overlaid with a suitable insulation overlay (See [[#8.1.4.1. Use Over Sensitive Materials and Systems | Article 8.1.4.1.]]),
 +
<li>the membrane manufacturer is agreeable to the application and is confident the membrane can withstand the anticipated hydrostatic pressures when the ''Vegetated Roof System'' is fully saturated with water, and
 +
<li>the membrane is fully adhered.
 +
</li></ol>
 +
<li><span class="recommended">''Semi-intensive'' and ''Intensive Vegetated Roof Systems'' should be designed as part of a ''protected roof system''</span>.
 +
<li>Every roof that supports a ''Vegetated Roof System'' must include, in addition to a drainage layer and membrane protection, a
 +
<ol>
 +
<li>full-coverage root barrier, and
 +
<li>filter fabric layer.
 +
</li></ol>
 +
<li><span class="principles">''Vegetated Roof Systems'' that are built in place should be designed with an additional layer of protection immediately below the growing media and above the rest of the ''roof system'', to ensure the protection of these materials from tools</span>.
 +
<li>''Separation zones''
 +
<ol>
 +
<li>are required to separate growing media and vegetation from (without limitation) ''parapets'', ''walls'', penetrations, drains, ''curbs'', sleepers, ''expansion joints'', and ''control joints'',
 +
<li>must be at least 304.8 mm (12”) wide but shall in any event be designed to the width required to resist ''Specified Wind Load'', and
 +
<li>shall be bordered by non-penetrating, restraining curbs or edging, installed around the perimeter of the ''Vegetated Roof System''.
 +
</li></ol> || 2024-October-29 }}
 +
</li></ol>
  
===='''A-9.1.3.4. Membrane Protection'''====
+
====14.1.3.13. Structures and Equipment====
:Sunlight reflected from windows, doors, cladding and other reflective materials can elevate roof surface and sub-surface temperatures, which may shorten the life of a membrane and the roof system materials beneath it, and may cause irreparable damage.  Roofs oriented to face south and southwest are particularly vulnerable to these effects, and sunlight reflected from metal can be more damaging than light reflected by glass.
 
  
:For more about this phenomenon, read ''The Impact of Solar Reflectivity of Glazing Adjacent Roofs'', published in the Summer 2021 issue of [https://www.mediaedgemagazines.com/roofing-contractors-association-of-british-columbia-rcabc/rc212/ RoofingBC].
+
<ol>
 +
<li>Non-structural installations superimposed on a ''roof assembly''
 +
<ol>
 +
<li><span class="recommended">are recommended for smaller installations, to</span>
 +
<ol>
 +
<li><span class="recommended">minimize the number of penetrations, curbs, or sleepers necessary for structural securement</span>,
 +
<li><span class="recommended">eliminate possible weak points in the ''roof system'', where a leak may occur</span>,
 +
<li><span class="recommended">avoid dedicated mechanical drainage</span>, and
 +
<li><span class="recommended">simplify removal of materials when membrane repairs are required</span>.
 +
</li></ol>
 +
<li>{{hilite | must take into account inevitable roof renewal || 2023-June-16 }}  (see [[Notes to PVC Standard#A-14.1.3.13. | Note A-14.1.3.13.]],
 +
<li>must be placed on an appropriate protection layer or supported by pedestals, pavers, or other means of distributing weight and point loading, and
 +
<li>may be placed on an ''insulated roof system'' provided the insulation will support all anticipated dead loads, live loads and point loads (See [[#14.1.3.2. Loads | Article 14.1.3.2., "Loads"]]).
 +
</li></ol>
 +
<li>{{hilite | Structurally supported || 2025-October-25 }} installations that are
 +
<ol>
 +
<li>'''cast-in-place''' <span class="principles">should be constructed on a pre‐curb that is continuously waterproofed as part of the primary roof membrane and waterproofed independently of the primary roof membrane</span>.
 +
<li>'''pre-cast''' must be secured
 +
<ol>
 +
<li>to a pre‐curb that is continuously waterproofed as a continuation of the primary roof membrane, or
 +
<li>to structural supports that are waterproofed in keeping with the requirements in [[#Part 12 - Penetrations and Curbs | Part 12]].
 +
</li></ol>
 +
</li></ol>
 +
<li>When concrete walls or structures are constructed without a pre-curb, all concrete surfaces must be fully and continuously enveloped with the primary roof membrane (See also [[Guarantee#3.2.1.2. Limitations and Exclusions of Guarantee | Division A, Article 3.2.1.2.]]).
 +
<li>Pre‐curbs must be
 +
<ol>
 +
<li>at least 101.6 mm (4") in height above the drainage plane of the highest adjacent ''roof assembly'',
 +
<li>completely enveloped with fully adhered acceptable membrane flashing (including all faces of drainage knock‐outs), and
 +
<li>properly waterproofed around dowels {{hilite |in their final position, using|| 2021-February-7 }}
 +
<ol>
 +
<li>{{hilite | a 2-component catalyzed polymethyl methacrylate (PMMA) or polyurethane methyl methacrylate (PUMA) reinforced liquid membrane flashing system|| 2021-February-7 }}, or
 +
<li>{{hilite | two cured coats of an Accepted polyurethane or silicon-based single-component liquid flashing system (See [[#12.3.2.6. Liquid Membrane Flashing | Article 12.3.2.6., "Liquid Membrane Flashing"]])|| 2021-February-7 }}.
 +
</li></ol>
 +
</li></ol>
 +
<li>When a structural planter adjoins a ''protected roof system'', the planter design must include
 +
<ol>
 +
<li>a plumbed mechanical drain {{hilite | conforming to the requirements for planter drains in the [https://rpm.rcabc.org/index.php?title=VRA_Standard “RGC Standard for Vegetated Roofs”] || 2025-October-25 }}, {{strike| inclusive of
 +
<ol>
 +
<li>a debris guard, extending above the top surface of the growing media at least 50.8 mm (2”), and
 +
<li>maintenance access, || 2024-October-29 }} or
 +
{{strike| </li></ol> || 2024-October-29 }}
 +
<li>drainage knock-outs in the pre-curb wall, which should be wide enough to allow for the free flow of water over or past of the membrane flashing plies.
 +
</li></ol>
 +
<li>When a structural planter adjoins an ''insulated roof system'', only a plumbed mechanical drain is permissible.
 +
<li><span class="recommended">A design review is advisable when a structural water feature incorporates penetrations for wiring, lights, or other submerged features</span>.
 +
<li>Tiles or other architectural finishes may be applied to the waterproofing membrane, subject to a written Variance from the '''''Guarantor''''' and approval by the membrane manufacturer (See [[#1.1.3.6. Variances | Article 1.1.3.6., "Variances"]]).
 +
<li>Drains, re-circulation inlets, and outlets used in water features, must include clamping rings, and must be sealed to the membrane ''assembly''.
 +
<li>When a leak detection system is specified, only non‐ferrous metal drains may be used.
 +
</li></ol>
  
<div id=A-9.3.3.1.></div>
+
==Section 14.2. Materials==
 +
===14.2.1. Material Properties===
 +
====14.2.1.1. Field and Flashing Membranes====
  
===='''A-9.3.3.1. Self-adhered and Cold Adhesive-applied Membranes'''====
+
<ol>
:"Adhered" refers to a broad category of membranes that may be self-adhering, typically requiring a primer to enhance adhesion (refer to the manufacturer's published instructions), adhered with cold adhesives (synthetic or bitumen-based), or mop-applied with hot bitumen (bitumen that is melted in a kettle).  Different requirements apply to each of these, depending on the membrane type, the method of application and the slope of the roof.
+
<li>Refer to {{hilite | '''Table 9.2.1.1.''' || 2025-October-25 }} in [[#9.2.1.1. Membrane Composition, Thickness, and Selection | Article 9.2.1.1.]] for field membrane composition, thickness, and selection.
 +
<li>Single and 2-component liquid membrane flashing systems used on any detail, including pre-curbs, must be listed in [[Division_C | Division C]], and must be proprietary to, or accepted by, the ''manufacturer''.  
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 10</span></big>===
+
====14.2.1.2. Membrane Protection====
<div id=A-10.1.3.1.(4)></div>
 
  
===='''A-10.1.3.1.(4) General Requirements, roof-wall connections'''====
+
<ol>
:{{hilite | Structural and ''roof system'' materials expand and contract as temperatures change, and this can be exacerbated by exposure to sun, followed by cool nights.  When these materials or assemblies are allowed to expand and contract independently of adjacent materials or assemblies, little if any impact on the ''roof system'' is ever noticed; but when they are fastened or adhered to each other, as they are when the roof field ''assembly'' is bonded to adjoining wall ''assemblies'' with membrane flashing, membrane ''racking'' may occur|| 2023-June-16 }} (see [https://rpm.rcabc.org/index.php?title=Glossary#R ''Racking''] in the Glossary).{{hilite |  Some membranes will easily handle movement, while others will not and will require special detailing to permit independent movement.  To avoid racking, which may result in membrane cracking or splitting, consult the membrane manufacturer's literature on flashing these types of details. || 2023-June-16 }}
+
<li>Membranes must be protected from damage by installing (directly above the roof membrane)
 +
<ol>
 +
<li>drainage mat,
 +
<li>an asphaltic core board overlay, measuring at least 4.76 mm (1/8”) thick,
 +
<li>XPS insulation, measuring at least 25.4 mm (1”) thick, or
 +
<li>a geotextile protection layer with a minimum thickness/weight of 200 g/m2 (used in {{hilite | ''vegetated roof system'' || 2025-October-25 }} applications, where decorative gravel is crushed or smaller than 12.7 mm (1/2”) in diameter, or where the roof covering, superimposed structure or equipment does not exceed the load-bearing capacity of the protection material).
 +
</li></ol>
 +
</li></ol>
  
<div id=A-10.1.3.1.(5)></div>
+
===={{hilite | 14.2.1.3. Reserved || 2025-October-25 }}{{strike| Root Intrusion Barriers || 2024-October-29 }}====
  
===='''A-10.1.3.1.(5) General Requirements, EIFS'''====
+
{{strike| <ol>
:For best practices, refer to the EIFS Practices Manual downloadable from the [https://eifscouncil.ca/ecc-practice-manual/ EIFS Council of Canada] and [http://eifscouncil.org/wp-content/uploads/2012/02/Tech-EIFSMouldings-V1_2.pdf Technical Bulletin 1, V. 1.2], "EIFS Trim and Mouldings - Design and Installation" issued by the EIFS Council of Canada.
+
<li>Root barriers
 +
<ol>
 +
<li>must be suitable for the installed ''roof covering'',
 +
<li>must be selected for their ability to support dead loads, live loads, and point loads, and
 +
<li>must be acceptable to the ''manufacturer''.
 +
</li></ol>
 +
</li></ol> || 2024-October-29 }}
  
<div id=A-10.1.6.1.></div>
+
====14.2.1.4. Drainage and Water Retention Materials====
  
===='''A-10.1.6.1. Expansion Joints'''====
+
<ol>
:Roof expansion joints, or movement joints, are designed to safely absorb thermal expansion and contraction of materials, or to absorb vibration.  This is especially critical on large roof areas where the expansion and contraction rates of materials, such as insulation panels, can adversely affect membranes and induce ''racking''; by dividing the roof into smaller area units, these effects can be ameliorated.
+
<li>{{hilite | Drainage mats, geo-synthetic drainage cores, and geo-composites used beneath any non-vegetated ''overburden''|| 2025-October-25 }}, must be
 +
<ol>
 +
<li>acceptable to the ''manufacturer'',
 +
<li>suitable for the installed ''roof covering'',
 +
<li>selected for their ability to support dead loads, live loads, and point loads, and
 +
<li>capable of permitting the anticipated flow rate of water.
 +
</li></ol>
 +
<li>Moisture retention and reservoir layers must be acceptable to the manufacturer/supplier of the ''Vegetated Roof System''.
 +
</li></ol>
  
:Expansion joints also allow for movement caused by settlement and earthquakes.
+
====14.2.1.5. Insulation and Insulation Overlays====
 +
(See [[#Part 7 - Insulation | Part 7, "Insulation"]], and [[#Part 8 - Insulation Overlays | Part 8, "Insulation Overlays"]])
  
<div id=A-10.1.6.2.></div>
+
<ol>
 +
<li>When XPS (with or without a concrete topping) is specified as the drainage layer, it must be grooved (by the manufacturer, or as a post-manufacturing alteration).
 +
<li>Insulation and ''insulation overlays'' must have a minimum load carrying capacity of 110 Kpa (20 psi), but in any event must be capable of supporting any loads superimposed on the membrane, without compression or distortion of the ''roof system'' or any one of its components.
 +
</li></ol>
  
===='''A-10.1.6.2. Control Joints'''====
+
====14.2.1.6. Filter Fabric====
:''Control joints'' (sometimes referred to as roof dividers) are site-built but relatively uncommon for roofs with flexible membranes. They are designed to help control thermal expansion and contraction stresses in the roof ''system'' where no structural expansion joint has been provided in the building design, by dividing large roof areas into smaller ones. ''Control joints'' may be present on older roofs with built-up roof systems, and will have to be taken into consideration by the ''Design Authority''; in some cases, ''control joints'' may be eliminated for replacement roofing.  Still, control joints may be employed by the ''Design Authority'' to control expansion and contraction of any materials in the ''roof system'', or for dividing existing roof areas for phased replacement roofing.
 
  
:{{hilite | ''Control joints'' may be employed to divide a large roof area into smaller roof areas, for the purpose of phasing replacement roofing. || 2023-June-16 }}
+
<ol>
 +
<li>Filter fabrics must be
 +
<ol>
 +
<li>acceptable to the ''manufacturer'',
 +
<li>suitable for the installed ''roof covering'',
 +
<li>selected for their ability to support dead loads, live loads, and point loads, and
 +
<li>capable of permitting the anticipated flow rate of water.
 +
</li></ol>
 +
<li>{{hilite |The properties, composition, and supply of filtration fabrics used in a ''vegetated roof system'' shall conform to the requirements in|| 2025-October-25 }} [https://rpm.rcabc.org/index.php?title=VRA_Standard#6.2.1.3._Filtration_Layers {{hilite | Article 6.2.1.2. || 2025-October-25 }}] {{hilite | of the “RGC Standard for Vegetated Roofs”|| 2025-October-25}}.
 +
<li>Fabric filter mats must be
 +
<ol>
 +
<li>water permeable and have proven long term weather resistance, and
 +
<li>strong enough to withstand traffic abuse and prevent displacement of insulation boards under flotation conditions.
 +
</li></ol>
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 11</span></big>===
+
====14.2.1.7. Decorative Gravel====
<div id=A-11.1.4.2.></div>
 
  
===='''A-11.1.4.2. Scuppers and Overflows'''====
+
<ol>
:{{hilite | The primary function of an overflow is to keep a roof from collapsing when primary roof drains are plugged or cannot drain heavy rainfall. New and existing buildings should incorporate overflows to handle large rain events. Refer to the "British Columbia Building Code" and the "British Columbia Plumbing Code" for drain sizing and location requirements. || 2023-June-16 }}
+
<li>Decorative gravel {{hilite | (aggregate) || 2025-October-25 }} (See [[Notes to PVC Standard#A-14.1.3.10. | Note A-14.1.3.10.]]) must be washed and may be smooth or crushed.
 +
<li>Large grade gravel may withstand wind scour more effectively than smaller gravel, but the ''Design Authority'' must determine the gradients, based on the ''Specified Wind Loads'' for the roof (See also [[#3.2.2.3. Gravel Ballast | Article 3.2.2.3., ''Gravel Ballast'']]).
 +
</li></ol>
  
<div id=A-11.1.4.3.></div>
+
====14.2.1.8. Pavers and Pedestals====
  
===='''A-11.1.4.3. Membrane Gutters'''====
+
<ol>
:{{hilite | Gutters designed with downward-draining flanged drains need sufficient width to properly secure and seal the flange to the gutter membrane system.  Gutters narrower than 300 mm compromise this critical detail, either by forcing the installer to trim the flange to fit the gutter width (which can compromise securement of the drain body), or by reducing the breadth of membrane needed to properly seal the drain flange to the gutter bottom. Gutters designed with cast-iron drains must be at least 100 mm (4") wider than the width of the drain body, to permit a sufficient membrane seal; more width is better, improving the effectiveness of the drain installation. || 2023-June-16 }}
+
<li>Pavers that are partially supported (i.e., with pedestals) must be capable of resisting anticipated loads.
 +
<li>Pedestals
 +
<ol>
 +
<li><span class="principles">should be adjustable when a level surface is required</span>, and
 +
<li>must be purpose-made and include an integral spacer rib no more than 4.76 mm (1/8”) wide, to uniformly separate pavers.
 +
</li></ol>
 +
</li></ol>
  
<div id=A-11.2.1.2.></div>
+
==Section 14.3. Application==
 +
===14.3.1. Guarantee Term Requirements===
 +
====14.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee====
  
===='''A-11.2.1.2. Roof Drains and Scuppers'''====
+
<ol>
:Roof drains are comprised mainly of two parts: a bowl or flange that is affixed to the roof deck with mechanical fasteners or a proprietary clamping mechanism; and an integral drain stem that connects the bowl or flange to the leader. Roof drains are sized according to the diameter of the drain stem.  The appropriate size and number of roof drains for any given roof area is determined by the relevant building code in force (Ref. "British Columbia Plumbing Code", Division B, Article 2.4.10.4., "Hydraulic Loads from Roofs or Paved Surfaces").
+
<li>To qualify for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part.
 +
</li></ol>
  
:Roof drains can be further classified as ''internal'' or ''external''. ''Internal roof drains'' are connected to leaders located and connected to a storm building drain or sewer inside the exterior surface of a building. ''Internal roof drains'' may be made of cast iron (secured to the ''roof assembly'' with clamps) or from copper or aluminum, fashioned from spun components that are welded together and incorporate a flange around the drain bowl.
+
====14.3.1.2. RoofStar 15-year Guarantee====
  
:''External roof drains'' direct storm water outside the exterior surface of a building.  ''Scuppers'' and ''overflow drains'' are the common types of ''external roof drains'', and may connect to leaders or simply drain freely. Any requirements for leaders and connections to leaders may be found in the applicable municipal and provincial building and plumbing codes (Ref. "British Columbia Building Code", Division B, Article 5.6.2.2., "Accumulation and Disposal").
+
<ol>
 +
<li>To qualify for a '''''RoofStar 15-year Guarantee''''', all ''projects'' shall comply with the requirements in this Part for a '''''RoofStar 5-year Guarantee''''' or '''''RoofStar 10-year Guarantee'''''.
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 12</span></big>===
+
===14.3.2. All Systems===
 +
====14.3.2.1. Membranes and Membrane Protection====
  
===<big><span class="reference">Notes to Part 13</span></big>===
+
<ol>
 +
<li>Membranes and membrane flashing must be installed in keeping with the requirements found elsewhere in this Standard.
 +
<li>Protection of roof membranes from mechanical damage caused by tools, accident or the work of others is mandatory during the installation and maintenance of any ''roof covering'' or living space (See also [[#9.1.3.4. Membrane Protection | Article 9.1.3.4., "Membrane Protection"]], for related requirements).
 +
</li></ol>
  
===<big><span class="reference">Notes to Part 14</span></big>===
+
====14.3.2.2. Filter Fabric====
<div id=A-14.1.></div>
 
  
===='''A-14.1. Design'''====
+
<ol>
:Membrane ''roof systems'' may be utilized for more than simple weather protection; they can be occupied by casual or regular users, for gardening, playing, lounging, or other leisure activities.  Roofs that serve as amenity spaces require that the ''Design Authority'' pay particular attention to the ''system'' selection itself and, especially, to the protection of the roof membrane.
+
<li>Fabric filter rolls {{hilite | used in any system other than a ''vegetated roof system''|| 2025-October-25 }} must be
 +
<ol>
 +
<li>at least 2489.2 mm (98") wide,
 +
<li>installed loose-laid (un-bonded) over the insulation and below any type of ballast or ''roof covering'',
 +
<li>overlapped at all edges a minimum of 304.8 mm (12"),
 +
<li>slit to fit over roof penetrations,
 +
<li>cut out around roof drains and other openings,
 +
<li>{{hilite | carried up all vertical transitions (including penetration flashings) above the ''finished roof system surface'' at least 76.2 mm (3”), || 2023-June-16 }} and
 +
<li>{{hilite | loosely held in place at all perimeter edges and curbs, behind metal counter flashings or wall finishes, || 2023-June-16 }} and
 +
<li>{{hilite | secured around penetration flashings. || 2023-June-16 }}
 +
</li></ol>
 +
</li></ol>
  
:A ''conventionally insulated system'' is not appropriate for all types of use or ''roof coverings''. For example, the designed live loading for occupied spaces, or the weight of a ''roof covering'', may require the ''Design Authority'' to specify particular materials, and consequently to design a roof as a ''protected roof system''. Furthermore, some ''roof coverings'' require maintenance that may result in damage to ''conventionally insulated systems''; ''protected roof system'' shield the sensitive membrane from this inevitability.
+
====14.3.2.3. Drainage {{strike| and Water Retention || 2024-October-29 }}====
  
:A ''protected roof system'' (often referred to as an "inverted roof") offers the designer many benefits, including</span>
+
<ol>
:*longer lasting membranes.
+
<li>{{hilite | The location of the drainage layer(s) shall conform to the requirements in [[#Part 7 | Part 7]]|| 2025-October-25 }}{{strike| A drainage mat must be installed below the XPS insulation || 2024-October-29 }}.
:*capacity for heavier dead and live loads</span>.
+
<li><span class="principles">A second drainage layer may be installed above the insulation, but this is at the discretion of the ''Design Authority''</span>.
:*only one control layer to seal and join with the rest of the building envelope</span>.
+
<li>Specialized proprietary drainage products must be acceptable to the ''manufacturer''.
:*fewer waterproofing challenges around penetrations</span>.
+
</li></ol>
:*the capacity for electronic leak detection (whether passive or monitored)</span>.
 
  
<div id=A-14.1.3.9.></div>
+
====14.3.2.4. Decorative Gravel====
  
===='''A-14.1.3.0. Filter Fabric'''====
+
<ol>
:Filter fabric is necessary to contain XPS insulation and thereby prevent ‘insulation stacking’ (displacement) when insulation boards become buoyant in water.  The fabric also prevents "fines" from settling at the membrane level and filling the voids between insulation board joints.
+
<li>When gravel {{hilite | (aggregate) || 2025-October-25 }} is specified as a ''roof covering'', only washed gravel may be used.
 +
<li>Ballast guards must be installed around all roof drains (See [[#11.3.2.3. Drain Protection Against Blockage | Article 11.3.2.3.]]).
 +
<li>Crushed gravel specified as a ''roof covering'' must be
 +
<ol>
 +
<li>installed over a geotextile protection layer, or its equivalent, when the gravel is crushed or smaller than 12.7 mm (1/2”) in diameter, and
 +
<li>{{hilite | must be applied in quantities sufficient to hold down the protection layer against displacement by wind. || 2023-June-16 }}
 +
</li></ol>
 +
</li></ol>
  
<div id=A-14.1.3.10.></div>
+
====14.3.2.5. Wearing Surfaces====
  
===='''A-14.1.3.10. Gravel'''====
+
<ol>
:Gravel used as a roof covering is different from its function as ballast on a ''protected roof system'' or ''modified protected roof system''; gravel used as ballast is considered a means of securement (holding down the rest of the ''roof system'') and is covered in Part 3, "Securing the Roof Assembly", and in Part 9.
+
<li>Pavers and unit-type masonry, such as brick or stone, must be supported by
 +
<ol>
 +
<li>proprietary (purpose-made) pedestals with at least a 4.76 mm (1/8”) integral spacer ribs for uniform spacing of pavers,
 +
<li>a proprietary drainage layer overlaid with a filter fabric mat, or
 +
<li>a drainage layer of loose aggregate (such as pea gravel) measuring at least 25.4 mm (1") in depth, installed over a filter fabric.
 +
</li></ol>
 +
<li>Pedestals, or a drainage layer,
 +
<ol>
 +
<li>must permit at least 12.7 mm (1/2″) of vertical separation between the paver and the underlying substrate, to provide airflow for drying surfaces and assist in leveling, and
 +
<li><span class="principles">should not impede the flow of water or air, and should uniformly distribute the dead load of pavers, and other unit masonry products, as well as predicted live loads</span>.
 +
</li></ol>
 +
<li>{{hilite | Cast-in-place concrete installed directly above the roof membrane must be separated from the membrane and its protection layers with material and a filter fabric or barrier material specified by the ''Design Authority'' and conforming to the requirements in || 2023-June-16 }} [[#14.1.3.11. Wearing Surfaces | Article 14.1.3.11.]]
 +
</li></ol>
  
<div id=A-14.1.3.11.></div>
+
====14.3.2.6. Vegetated Roof Systems====
 +
(See [[Notes to PVC Standard#A-14.3.2.6. | Note A-14.3.2.6.]])
  
===='''A-14.1.3.11. Wearing Surfaces'''====
+
<ol>
:{{hilite | Inaccessible wearing surfaces such as concrete are permissible, but because the cost to remove them, in the event of a leak, is borne by the owner of the roof, specifying a scored slab may minimize destruction costs by isolating wearing surface removal and replacement to specific grids. Also, consider "Electronic Leak Detection" when specifying wearing surfaces like concrete; working in combination with a scored slab, ELD can minimize slab removal costs. || 2023-June-16 }}
+
<li>{{hilite | All ''Vegetated Roof Systems'' must be installed according to the requirements in the [[VRA Standard | “RGC Standard for Vegetated Roofs”]]|| 2025-October-25 }}.
 +
{{strike| as specified and shown on drawings, and in any case must include a
 +
<ol>
 +
<li>root barrier,
 +
<li>drainage layer, and
 +
<li>filter cloth.
 +
</li></ol>
 +
<li><span class="principles">Roofs that support built-in-place soil or growing media beds should include an additional penetration-resistant protection course between the growing bed and other ''Vegetated Roof System'' materials</span>.
 +
<li>Root intrusion barriers must be
 +
<ol>
 +
<li>installed in a continuous plane above the roof membrane,
 +
<li>located within the ''Vegetated Roof System'' as specified by the ''Design Authority'',
 +
<li>sealed at all seams and laps with a compatible tape, as directed by the manufacturer's instructions,
 +
<li>carried up the inside of soil retention perimeters used to separate growing media and vegetation from (without limitation) ''parapets'', ''walls'', penetrations, drains, ''curbs'', sleepers, ''expansion joints'', and ''control joints'' (the "separation zone"), and
 +
<li>sealed to the ''separation zone'' edge material.
 +
</li></ol>
 +
<li>''Separation zones'' must be installed to conform to the design of the ''Vegetated Roof System'', and shall also conform to the requirements in [[#14.1.3.12. Vegetated Roof Systems | Article 14.1.3.12.]]
 +
<li>Membrane flashing must be protected from damage, both during the installation of a ''Vegetated Roof System'', and during ongoing maintenance. || 2024-October-29 }}
 +
</li></ol>
  
:Note that not all filter fabrics can successfully prevent the passage of concrete slurry. For this reason, the ''Design Authority'' should consult with the membrane manufacturer concerning a suitable filtering product.
+
====14.3.2.7. Structures and Equipment====
  
<div id=A-14.1.3.13.></div>
+
<ol>
 +
<li>Structural installations (i.e., planters, pools, ponds, or water courses) must be constructed with
 +
<ol>
 +
<li>a pre‐curb (start‐up curb), onto which the installation is formed and poured, or
 +
<li>full-height walls that are formed and poured in direct contact with the structural ''deck''.
 +
</li></ol>
 +
<li>Pre‐curbs must
 +
<ol>
 +
<li>achieve a finished height at least 101.6 mm (4") above the ''drainage plane'' of the highest adjacent ''roof assembly'' (For an example of this see Construction Detail [[SBS Structural Planter | "Structural Planter"]]), and
 +
<li>be completely enveloped with fully adhered acceptable sheet or liquid membrane flashing (including all faces of drainage knock‐outs).
 +
</li></ol>
 +
<li>{{hilite | All planters and water features must be fully waterproofed on the inside; sheet membrane installation must conform to the requirements in || 2023-June-16 }} [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]]{{hilite | , and liquid membrane flashing shall conform to the requirements in || 2023-June-16 }} [[#10.3.3.4. Liquid Membrane Flashing | Article 10.3.3.4.]]
 +
<li>{{hilite | All membrane flashing shall terminate || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | on the outside face of the planter wall, at least 50.8 mm (2”) below the upper edge, or || 2023-June-16 }}
 +
<li>{{hilite | on the inside face of the planter wall with a cut reglet ''linear metal flashing'', caulked with sealant and installed no less than 50.8 mm (2”) above the top surface of growing media. || 2023-June-16 }}
 +
</li></ol>
 +
<li>{{hilite | Structural installations that do not incorporate pre-curbs must be || 2023-June-16 }}
 +
<ol>
 +
<li>{{hilite | flashed to cover the complete exterior surface with roof membrane, or || 2023-June-16 }}
 +
<li>{{hilite | flashed with sheet membrane that is installed, terminated, and protected to conform to || 2023-June-16 }} [[#10.3.2.3. General Application Requirements for Perimeters and Walls | Article 10.3.2.3.]]
 +
</li></ol>
 +
<br>
 +
:{|
 +
|-
 +
|-
 +
| colspan="1"; style="text-align:center;width:450px;" | {{hilite | '''Figure 14.3.2.7. Pre-curbs and Sheet Membrane Flashing''' || 2025-October-25 }}<br>{{hilite | Forming Part of Article 14.3.2.7. || 2025-October-25 }}<br><small>(Click to expand illustration)</small>
 +
|-
 +
| [[File:SBS Figure 14.3.1.jpg|link=http://rpm.rcabc.org/images/5/5b/SBS_Figure_14.3.1.jpg | 450 px]]
 +
|}
  
===='''A-14.1.3.13. Structures and Equipment'''====
+
<li>Dowels (reinforcement bar) must be
:{{hilite | Because roof membranes eventually require renewal (see Part 1 for available options), constructing heavy installation on a membrane poses challenges for the roofing contractor at renewal time (and leaks that occur beneath a heavy structure cannot be repaired without considerable expense by the owner). Therefore, consider specifying only relatively light superimposed loads for placement ''on'' the membrane, and consider structural supports for larger installations that, by their nature, cannot be moved to facilitate roof membrane renewal. || 2023-June-16 }}
+
<ol>
 +
<li>inserted into the pre‐curb after application of the membrane flashing, and
 +
<li>waterproofed in their final position, where they penetrate the pre-curb.
 +
</li></ol>
 +
<li>Dowels must be waterproofed with
 +
<ol>
 +
<li>a single application of an accepted, fleece-reinforced 2-component liquid membrane flashing, or
 +
<li>two (2) applications of a single-component liquid membrane flashing,
 +
<ol>
 +
<li>applied to properly prepared surfaces,
 +
<li>fully cured between coats,
 +
<li>in keeping with the application requirements in [[#10.3.3.4. Liquid Membrane Flashing | Article 10.3.3.4.]], for 2-component reinforced liquid membrane flashing, or the manufacturer’s instructions, when using a single-component liquid membrane flashing, and
 +
<li>applied no less than 50.8 mm (2”) on vertical surfaces and in a radius around the base of each dowel.
 +
</li></ol>
 +
</li></ol>
 +
<li>When structures or equipment exceed the limits stated in [[Guarantee#3.2.1.2. Limitations and Exclusions of Guarantee | Division A, Article 3.2.1.2.]], a membrane integrity scan and any resulting repairs must be undertaken before the membrane is covered.
 +
</li></ol>
  
<div id=A-14.3.2.6.></div>
+
<hr>
 +
<div id=NOTES></div>
  
===='''A-14.3.2.6. Vegetated Roof Systems'''====
+
=[[Notes to PVC Standard | Notes to Standard]]=
:Built-in-place ''vegetated roof systems'' often are constructed and maintained using sharp or pronged hand tools.  To ensure the roof membrane is not damaged during installation or maintenance of the VRS, the ''Design Authority'' should consider adding additional penetration-resistant protection courses, including protection around all perimeters.
 
  
<div class="col-md-12">
 
 
</div><!-- mainBodyDiv -->
 
</div><!-- mainBodyDiv -->
 
</div><!-- row -->
 
</div><!-- row -->

Latest revision as of 20:30, 1 November 2024



Contents

Division B - Standards
Waterproofing Roof Systems: Thermosplastic Membranes


RGC Standard for PVC Membrane Roof Systems

About the Standard

This Standard is a consolidation of requirements previously published in the Roofing Practices Manual for Flexible Membrane Roofing Systems. It is comprised of fourteen (14) Parts that contain the requirements, guiding principles, recommendations and informative materials necessary for a roof to qualify for a RoofStar 5-Year Guarantee, RoofStar 10-Year Guarantee or RoofStar 15-year Guarantee. Requirements to qualify for a RoofStar 15-Year Guarantee are listed in each relevant Part under Section 1. All RoofStar 15-Year Guarantee requirements must be read together with the General Requirements for each Part in this Standard.

Notes to the Standard are hyperlinked from each Part and can be read by using the link in the Table of Contents for the Standard. Highlighted text within the body of the Standard indicates revisions made within the last twelve (12) months.

This Standard follows a specific structure, incorporates defined terms, and utilizes coloured text to denote specific meaning; this is explained in Division A, Part 2, "Structure and Organization of RPM and Standards". When the requirements in this Standard conflict with other resources found either in this Manual or in manufacturer's published instructions, the rules for Authority and Conflict in Division A, Article 2.3.1.2. shall be applied.

Readers are advised to review relevant materials that can be accessed through the hyperlinks embedded in the body of text.



First Edition: October 18, 2019
Previous Edition: October 20, 2023
Current Edition: Adopted October 25, 2024

All changes to this Standard are effective
November 1, 2024

© RCABC 2024
RoofStarTM is a registered Trademark of the RCABC.
No reproduction of this material, in whole or in part, is lawful without the expressed permission of the RCABC Guarantee Corp.

Part 1 - General

Section 1.1. Design

1.1.1. General

1.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.
  2. In addition to the Scope described in Division A, this Standard applies to the design and construction of roof systems that are site-built, or which may be factory fabricated, in part or in their entirety.

1.1.1.2. Coverage and Limitations

  1. Coverage under the RoofStar™ Guarantee shall be as described in Division A, Article 3.2.1.2.

1.1.1.3. References

  1. In this Standard, all references to
    1. the "British Columbia Building Code" (the "Building Code", or the "Code"), to municipal or regional building codes or regulations, or to other standards, presume the current edition that is in force,
    2. materials mean those materials expressly accepted by the Guarantor, unless stated otherwise, and
    3. measurements are shown in metric units first, followed by Imperial values (typically in parentheses; see Division A, Article 2.1.3.2., "Measurements").

1.1.1.4. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part and the Standard:
    1. Design Authority means the individual or firm responsible for the issuance of project specifications and details to which the project will be bid and constructed. When a Contractor designs a project, the Contractor is deemed to be the Design Authority.
    2. Finished roof system surface means the top surface of any roof system, inclusive of ballast or overburden.
    3. Grade-level waterproofing system means an insulated or uninsulated system, designed and constructed at grade with a sheet or liquid-applied membrane, to exclude water.
    4. Linear metal flashing means flashings cut and shaped from flat metal stock, to redirect water at roof perimeters and edges, or to control the flow of water in valleys and drainage spillways. Linear metal flashings also protect roof membranes from weathering and damage and provide an aesthetic finish to the roof system.
    5. Guarantor (used interchangeably with RGC) means the RCABC Guarantee Corporation, which offers the RoofStar Guarantee.
    6. Membrane system means the combination of field and flashing membranes which function together to waterproof underlying materials and systems.
    7. Observer means a firm or person paid by the building Owner (directly, or through the RGC), who is independent (not a member) of the RCABC, and who is accepted by the RGC to provide Quality Assurance reviews during construction and after completion of the project, according to the terms and conditions set out in RCABC policy .
    8. Vegetated Roof Assembly (VRA), used interchangeably in the "RGC Standard for Vegetated Roofs" with green roof or green roofing, means a functional arrangement of interacting components, inclusive of vegetation, that is designed in conjunction with a supporting roof assembly, is intended to both grow and flourish, and is often installed on a roof to control the rate of rainwater discharged through a storm drainage system .
    9. Waterproofing roof system means an insulated or uninsulated roof system, designed and constructed on roofs using a sheet or liquid-applied membrane, to exclude water. This type of system typically is installed on roof slopes less than 1:4 (3” in 12”).
    10. Water-shedding roof system means an insulated or uninsulated roof system, designed and constructed to shed water away from a structure, not to waterproof it. This type of system typically is installed on roof slopes greater than 1:4 (3” in 12”) but may be installed on slopes as low as 1:6 (2" in 12").

1.1.1.5. Reserved

1.1.1.6. Objectives

  1. Every roof system shall conform to the more stringent of this Standard or the Building Code or By-law having jurisdiction.

1.1.1.7. Responsibility for Design

  1. Each design of a roof system shall be undertaken by a person or persons qualified in the work concerned (See Article 3.1.3.1. with respect to the securement of the roof assembly).
  2. The Coordinating Registered Professional is responsible for ensuring the design of the vegetated roof assembly complies with all applicable building, energy, and fire codes having jurisdiction.

1.1.1.8. Pre-Design Requirements

  1. The Coordinating Registered Professional is responsible to ensure that the roof assembly design is a multi-disciplinary enterprise that aligns with the designs for structural, plumbing, mechanical, electrical, architectural, and building envelope, together with all trades whose work intersects with the Contractor’s scope of work, to minimize out-of-sequence operations that could compromise the integrity of the completed roof assembly.

1.1.1.9. Suitability of Design

  1. The Design Authority is responsible for determining the appropriate roof assembly design and must consider (without limitation)
    1. the requirements of the building code having jurisdiction,
    2. the structural capabilities or limitations of the building,
    3. fire resistance and the roof class requirements for the building,
    4. wind loads (See Part 3 of this Standard),
    5. the effects of nearby structures on the roof assembly,
    6. the potential effects of reflected heat on the roof assembly,
    7. roof system aesthetics, and
    8. maintenance requirements, including the safety of maintenance workers.
  2. When the roof is intended as a platform to support a vegetated roof system, the supporting roof assembly must be suitable for that purpose (See Sentence 1.1.3.1.(2)).

1.1.2. Guarantee Term Requirements

1.1.2.1. RoofStar 5-Year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.
  2. In addition to Sentence (1), all projects shall comply with
    1. the project specifications and drawings, and
    2. the manufacturer's published installation requirements.

1.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Standard for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, together with the following:
    1. Each project must be designed and constructed in compliance with both the RoofStar Guarantee Standards, together with the membrane manufacturer’s available 20-year System Warranty standards.
    2. Where enhanced roof system securement is required by the manufacturer, which may exceed the securement required in a Tested Assembly, an Assembly with Proven Past Performance or a custom-engineered securement, the project must comply with the higher securement requirements.
    3. On all "new construction" projects, where external access is not provided, all roofs with a field elevation greater than 7620 mm (25’) above grade must incorporate safe, appropriate access to the roof, for example by incorporating stairs and a doorway or a properly located roof hatch (Safe, appropriate access to the roof is recommended for existing buildings, to facilitate maintenance and ongoing performance reviews).
    4. Moisture surveys for Membrane Replacement projects must be documented and submitted in report form to the Guarantor for review and consideration prior to tender; documented testing means a moisture survey scan performed by a qualified person, and
      1. at least three (3) cut tests for roof areas up to 20,000 sf (200 squares), or one (1) cut test for every 2000 sf (20 squares), whichever is more,
      2. one (1) cut test for every 3000 sf (30 squares) of roof area that exceeds the first 20,000 sf (200 squares), or
      3. one (1) cut test for each small roof area measuring no more than 200 sf (2 squares).
    5. Membrane Replacement projects must incorporate new insulation overlays in keeping with the requirements published in Part 8, Insulation Overlays.
    6. Materials left in place for partial roof system replacement must be scanned for moisture (Article 1.1.4.3.).
    7. All roofs (new construction and replacement roofing) must be built with a minimum slope of 2% (1:50) (Article 2.1.2.2.).
    8. All replacement roofing must utilize crickets to enhance drainage around curbs and sleepers (Article 2.1.2.2.).
    9. On new construction roofs, curbs and sleepers wider/longer than 1219.2 mm (48") must incorporate crickets to improve drainage (Article 7.1.2.2.).
    10. An insulation overlay is required on all conventionally insulated roof systems (Article 8.1.2.2.).
    11. Only certain membranes will qualify for a RoofStar 15-year Guarantee (Article 9.1.2.2.).
    12. All drains and overflows require clamping rings, and overflows are required for each roof area (Article 11.1.2.2.).
    13. Enhanced penetration flashing requirements (Article 12.1.2.2.).
    14. Linear metal flashings must be fabricated from 24-gauge material (Article 13.1.2.2.).

1.1.2.3. Quality Control

  1. Notwithstanding any other requirements in this Standard, the Contractor shall
    1. bid the project to meet the more stringent of this Standard or the project specifications,
    2. bid the project to include only RGC-accepted systems and materials,
    3. ensure that the supporting roof assembly conforms to the requirements and limitations of Article 1.1.3.1.,
    4. notify the Observer at least 24 hours before construction is scheduled to start or resume (72 hours notice is required for projects further away than 100 km),
    5. ensure that construction conforms to this Standard and exhibits good workmanship,
    6. ensure that samples, reports, shop drawings, ELD arrangements, certificates, manufacturer approvals, warranty documentation, and all other submittals are collected and provided to the Guarantor as required in Article 1.3.2.4., and
    7. abide by all pertinent RCABC policies.

1.1.2.4. Quality Assurance

(See Note A-1.1.2.4. )

  1. Notwithstanding any other requirements in this Standard, the Observer shall
    1. verify that the materials used in construction are accepted by the Guarantor and listed in Division C of this Manual,
    2. review the construction of the roof system (according to the prescribed number of observations, with consideration for the expected duration of construction) for conformance with the more stringent of
      1. this Standard,
      2. conditions and limitations in Division A of the RPM, as they apply,
      3. the manufacturer’s published requirements,
      4. the project drawings and specifications, or
      5. the Building Code having jurisdiction.
    3. review and report whether the Contractor has met the policy requirements noted in this Standard, and
    4. perform cut tests or other acceptable methods, whenever required, to verify that the materials and methods of construction conform to this Standard (for example, this may be required when the Contractor has completed more than 30 squares of roofing without an observation).

1.1.3. All Systems

1.1.3.1. Permitted Roof Systems

(See Note A-1.1.3.1.)

  1. This Standard applies to new construction, and to the partial or complete replacement of existing roofs, constructed as
    1. Uninsulated systems in which the membrane is bonded directly to the roof deck or an overlay, and is exposed to the weather and to sunlight,
    2. Conventionally insulated systems, sometimes referred to as Compact Roofs, in which the membrane is installed above insulation and other roof system materials, and is exposed to the weather and to sunlight,
    3. Protected roof systems, also referred to as “inverted”, in which the membrane is installed beneath other roof system or protection materials (usually insulation), and is protected from exposure to the weather and from sunlight, and
    4. Modified protected roof systems, which combine the functions and benefits of both a conventionally insulated system and a protected roof system, and where the membrane is protected from exposure to the weather and to sunlight.
  2. Where the roof is intended to support a vegetated roof system and qualify for a RoofStar Vegetated Roof Guarantee, only a new roof or a roof that is specified for a complete roof system replacement will qualify for the Guarantee (See Article 1.1.4.2. and Article 1.3.3.2. ).

1.1.3.2. Accessibility for Maintenance

  1. Any hatch, ladder or mechanical unit should be located a sufficient distance away from the roof edge (setback zone) so that other fall protection measures are not required by those using or accessing this equipment.
  2. When it is not possible to situate a hatch, ladder, or mechanical unit outside the setback zone, guard rails should be designed for the roof edge to provide additional fall protection for those using or accessing such equipment.
  3. Each roof should be designed to provide safe access for maintenance of roof drains, corners, or mechanical equipment, where the roof is at least 3 m (10’) above the surface of the ground, or where a hazard to a person exists, should a fall be possible (this principle also applies to roof areas intended for regular occupancy); design elements to mitigate fall hazards should align with the Code having jurisdiction, and with the Workers Compensation Act Regulations, and should include
    1. tall parapets,
    2. guardrails, or
    3. tie-off anchors.
  4. Where a roof is intended to support a vegetated roof system, the roof must satisfy the design and pre-construction requirements published in the “RGC Standard for Vegetated Roofs”.

1.1.3.3. Membrane Integrity Testing

(See Note A-1.1.3.3. and Figure 1.1.3.3.-A )

  1. Electrical current membrane integrity testing shall conform to
    1. ASTM D7877, "Standard Guide for Electronic Methods for Detecting and Locating Leaks in Waterproof Membranes", or
    2. ASTM D8231, "Standard Practice for the Use of Low Voltage Electronic Scanning System for Detecting and Locating Breaches in Roofing and Waterproofing Membranes."
  2. An electrical current membrane integrity test is required when anyone other than the Contractor installs overburden, amenities, or equipment, (In this Standard, the term "electrical current membrane integrity test" means a test method that uses electrical current and electronic sensing technology to detect breaches in the membrane system).
  3. An electrical current membrane integrity testis required when the Contractor installs overburden, amenities, or equipment, but only when
    1. the total project area (footprint), inclusive of planters or other waterproofed features, exceeds 18.58 m2 (200 sf), and
    2. overburden, amenities, or equipment exceed 152.4 mm (6”) in depth.
  4. When the roof assembly supports a vegetated roof system covered by a RoofStar Guarantee an electrical current membrane integrity test is optional (not required) but recommended . An electrical current membrane integrity test is required immediately prior to the installation of a vegetated roof system .
  5. An electrical current membrane integrity test must be performed by an RGC-recognized service provider listed in Division C.
  6. Flood testing employed as a secondary or alternative membrane integrity test is strongly discouraged for conventionally insulated roof systems because of the risk of extensive damage to system components or the building interior, and is best suited for protected roof systems (See Note A-1.1.3.3.(5)).
  7. If flood testing is specified, it shall be conducted prior to the installation of insulation and roof coverings, and must be executed in keeping with ASTM D5957, "Standard Guide for Flood Testing Horizontal Waterproofing Installations".


Figure 1.1.3.3.-A Electronic Integrity Testing
Forming Part of Article 1.1.3.3.
(Click to expand illustration)
Figure 1.1.3.3.-A.jpg

1.1.3.4. Electronic Leak Detection

(See Note A-1.1.3.4.)

  1. Electronic Leak Detection (ELD), when specified by the Design Authority, shall conform to
    1. ASTM D7877, "Standard Guide for Electronic Methods for Detecting and Locating Leaks in Waterproof Membranes", or
    2. ASTM D8231, "Standard Practice for the Use of Low Voltage Electronic Scanning System for Detecting and Locating Breaches in Roofing and Waterproofing Membranes."
  2. Electronic Leak Detection (ELD) is optional for waterproofing roof systems, but strongly recommended
    1. for projects where multiple trades will have access to a roof that is under construction and completed, to identify breaches in the waterproofing membrane in a timely way and avoid future costly delays,
    2. when the roof assembly protects a sensitive occupied space (i.e., data centres, hospitals, critical infrastructure), or
    3. when the roof supports any type of overburden, amenities, or equipment, including a vegetated roof system .
  3. When Electronic Leak Detection is specified, it shall provide detection capabilities for all waterproofed surfaces, and should extend at least 50.8 mm (2") vertically from the drainage plane at
    1. all transitions,
    2. any point along the entire deck perimeter, and
    3. protrusions.

1.1.3.5. Hot Works

(See Note A-1.1.3.5.)

  1. The Design Authority may specify that the Contractor must maintain compliance with the RCABC Hot Works Program and consequently manage the Hot Works conducted on site (See Article 1.3.2.1.).
  2. When the project involves Hot Work, the Design Authority must either
    1. pre-approve alternate applications already written in this Standard or another applicable Standard published in this Manual, when the specified application is deemed to be fire-sensitive by the Contractor as part of the risk assessment process, or
    2. provide alternate material and application requirements in the Specification for fire sensitive locations on the project.

1.1.3.6. Variances

  1. When a design is unable to conform to the Standard, the Design Authority may apply to the RGC for a written Variance.
  2. Application for a written Variance must be made in writing (email correspondence is common), and must
    1. identify the project name and its civic address,
    2. identify the RoofStar Guarantee number (if assigned),
    3. identify the Contractor (if awarded),
    4. articulate the nature of the design problem,
    5. identify the RoofStar Guarantee requirement to be varied, and state the desired modification (i.e., reduce the requirement for 203.2 mm (8") to 152.4 mm (6")),
    6. cite the reference to which the Variance will apply (i.e., Standard name, article number, sentence number, etc.), and
    7. provide design drawings, photographs, and roof plans, referencing grid lines that identify or articulate the boundaries to which the Variance will be applied.
  3. Variances are issued by the RGC only to the Design Authority and will be distributed to the Contractor.
  4. A Variance may be unrestricted in its scope, or it may include one or more conditions, or a restriction in coverage, that will affect the design and construction of the project, to accommodate the varied standard, but this is at the discretion of the Guarantor.
  5. Variances are issued only for the project-specific issue identified in the written request, and do not constitute general permission to depart from the published requirements in this Standard, for any aspect of the same project or for future projects, designed or constructed by any other firm.
  6. .

1.1.4. Replacement and Alterations

(The requirements in Subsection 1.1.3., "All Systems", shall be read together with the following Articles) (See Note A-1.1.4.)

1.1.4.1. General Requirements

  1. Unless expressly permitted otherwise in this Standard, the design for replacement roofing shall conform to the requirements for new roofing in this Standard.

1.1.4.2. Complete Roof System Replacement

  1. Complete roof system replacement shall conform to the general requirements in Article 1.1.4.1., unless expressly varied elsewhere in this Standard.
  2. Roof system replacement means the complete removal and replacement of all roof system and metal flashing materials, exclusive of the air or vapour control layers, and only new replacement materials shall be installed.
  3. Subject to the requirements in Part 6, "Air and Vapour Controls", the decision to reuse and repair an existing air or vapour control layer remains the responsibility of the Design Authority.
  4. Roof system replacement projects are eligible to qualify for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee, subject to their respective requirements.

1.1.4.3. Partial Roof Replacement

  1. Partial replacement of roof systems is permitted by the Guarantor, but coverage under the Guarantee is limited to new materials supplied and installed by the Contractor.
  2. Retention of insulation materials in a roof system is subject to the requirements for insulation in Part 7.
  3. Membrane replacement, which is limited to the removal and replacement of the roof membrane and materials adhered to the membrane,
    1. may be specified without a written Variance from the Guarantor, and
    2. may qualify for a RoofStar 5-year Guarantee and RoofStar 10-year Guarantee, provided
      1. the Design Authority is certain the existing roof system is properly secured to the existing deck structure (See Part 3, "Securing the Roof Assembly"),
      2. the existing roof system is demonstrably dry and free of any wet materials (wet materials must be replaced, in order to qualify for a RoofStar Guarantee),
      3. the existing field membrane will be removed,
      4. a new insulation overlay will be supplied and installed, together with a new roof membrane,
      5. existing membrane flashing will be removed and replaced with new materials, and
      6. the design conforms to the requirements in this Standard for new roof construction.
  4. To qualify for a RoofStar 15-year Guarantee, membrane replacement projects must conform to the requirements of this Article and shall include the removal and replacement of the insulation overlay (Ref. Article 1.1.2.2.).

1.1.4.4. Membrane Recovering

(See Note A-1.1.4.4. )

  1. Recovering (installing a new membrane system over an existing membrane system)
    1. may qualify for both a RoofStar 5-year Guarantee and a RoofStar 10-year Guarantee, but only if it is permitted under a written Variance issued by the Guarantor prior to the tendering of documents (recovering is not a recommended practice and will limit the scope of coverage under the RoofStar Guarantee), and
    2. does not qualify for a RoofStar 15-year Guarantee.
  2. Membrane recovering, which is a type of roof system replacement, does not qualify for a RoofStar Vegetated Roof Guarantee .
  3. A RoofStar Guarantee issued for a recovered roof is limited strictly to the value of new roof system materials; existing materials that remain in place beneath new materials are not covered by the RoofStar Guarantee.
  4. All membrane recovering project specifications and drawings shall reflect and conform to the construction requirements in Article 1.3.3.4.
  5. Before proceeding with roof recovering, the Design Authority should consider
    1. the requirements for moisture testing (described below),
    2. testing securement of materials to be left in place, and
    3. the potential consequences of failure for the building and its use.
  6. To qualify for a written Variance from the Guarantor, the Variance request (See Article 1.1.3.6.)
    1. must identify the type of roof system to which the Variance pertains (i.e., uninsulated, conventionally insulated, protected, or modified protected roof system),
    2. must indicate how the new roof system will be secured (See Part 3, "Securing the Roof Assembly"),
    3. must specify how the existing roof system will be physically separated from other roof areas, and
    4. must include the formal independent report that describes the condition of the existing roof system, and which documents results from cut tests and moisture investigation that are prerequisites for a RoofStar Guarantee.
  7. Uninsulated and protected roof systems presented to the Guarantor in a written Variance application by the Design Authority must be
    1. free of blisters and breaches in the membrane,
    2. independently surveyed by qualified professionals, when they are constructed on a wood deck, using calibrated moisture detection equipment, and
    3. cut open and probed for moisture and deterioration when any moisture is detected in a wood deck (the results of such investigation must be formally documented for review by the Guarantor), or
  8. Conventionally insulated and modified protected roof systems presented to the Guarantor in a written Variance application by the Design Authority must be independently surveyed by qualified professionals using calibrated moisture detection equipment and cut tests, and the resulting survey shall be formally documented for review by the Guarantor.
  9. All cut test surveys performed on conventionally insulated systems
    1. shall be independently documented for review by the Guarantor,
    2. must be performed using ASTM D7636/D7636M-11, "Standard Practice for Sampling and Analysis of Modified Bitumen Roof Systems", and
    3. shall be no fewer than
      1. three (3), for roof areas up to 20,000 sf (200 squares), or one (1) for every 2,000 sf (20 squares), whichever is more,
      2. one (1) for every 3000 sf (30 squares) of roof area that exceeds the first 20,000 sf (200 squares), and
      3. one (1) for each small roof area equal to or less than 200 sf (2 squares).
  10. When a conventionally insulated roof system
    1. is structurally sloped, at least half (50%) of the required cut tests shall sample the roof in or near valleys, and near roof drains.
    2. is structurally flat, samples shall be taken near roof drains and in a random pattern across the roof.
  11. All wet material identified by either the independent moisture detection survey or through cut tests shall be specified for removal.

1.1.4.5. Tie-ins, Additions, and Alterations to Existing Roofing

  1. Where a new roof adjoins and ties into an existing roof, the two areas must be isolated and separated by a control joint securely attached to the structure and waterproofed in keeping with the requirements in both Article 10.1.6.2., "Control Joints (Roof Dividers)", and Part 10, "Perimeters and Walls".
  2. If project conditions do not allow for a curb joint, the Design Authority must submit an alternative design and obtain a written Variance from the Guarantor that permits the elimination of curb joints (see Article 1.1.3.6., "Variances"); any alternative design
    1. must include design specifications and construction details showing a positive water cut-off that fully isolates the existing roof system from the new roof system, and
    2. shall show how the new roof system will be easily distinguishable from the existing roof system.
  3. Repairs or renovations to an existing roof system that is not covered by a RoofStar Guarantee do not qualify for a RoofStar Guarantee (the term "renovation" means the removal and replacement of, or the application of a cover to, a portion of the roof system).
  4. Modifications or additions to a guaranteed roof are permissible, subject to various conditions, but must be made by a Contractor qualified to perform work under the RoofStar Guarantee Program.

1.1.5. Reserved

Section 1.2. Reserved

Section 1.3. Application

1.3.1. Reserved

1.3.2. All Systems

1.3.2.1. Hot Works: Contractor Requirements

  1. The Contractor must maintain the requirements of the RCABC Hot Works Program, including (without limitation)
    1. Insurance Coverage, wherein the limits carried on the Contractor’s policy must equal or exceed the minimum requirements set by RCABC, and coverage must be unhindered by warranties that limit or exclude coverage when Hot Works is required,
    2. Education and training, since workers who perform Hot Works must be trained by the Contractor and kept current with acceptable methods,
    3. the "British Columbia Fire Code", wherein a Fire Safety Plan, preventative methods or alternative work procedures, fire watches, and the use and placement of equipment at the project site must comply with the BC Fire Code requirements for Hot Work,
    4. a Fire Safety Plan, whereby
      1. the Contractor must assess the hazards to property and persons and produce a written Fire Safety Plan prior to the start of work, and
      2. the Fire Safety Plan must be kept on the project site and must be kept current until the project is completed,
    5. RoofStar Guarantee Standards, to which the Contractor must conform, at each juncture where the interface of different membranes applications constitutes part of the Fire Safety Plan,
    6. a Fire Watch, in which the Contractor must, as part of the Fire Safety Plan, conduct a fire watch
      1. that complies with the "British Columbia Fire Code",
      2. is assigned to competent, trained personnel using suitable equipment, including the use of a hand-held infrared thermometer, and
      3. is documented in a written fire watch log, and
    7. Hot Works Notification, wherein the Contractor shall notify the project authority or the AHJ, as and when required, that Hot Works will be performed.

1.3.2.2. Workmanship

(See Note A-1.3.2.2.)

  1. The Contractor must take reasonable measures to protect the project from damage by the weather, during and at the completion of the project.
  2. Open penetrations and flashings must be temporarily sealed off from the weather, even when other trades are responsible to make a permanent seal or install overlapping materials (See Article 4.2.1.1.).

1.3.2.3. Contractor Qualifications

  1. Supervision and installation of a RoofStar-guaranteed waterproofing roof system may be conducted only by established employees of the Contractor, and every project must be supervised by a Journeyperson employee who holds a valid ticket.
  2. A Journeyperson may supervise a maximum of three (3) apprentices and/or three (3) labourers (ref. RCABC Policy A-248).

1.3.3. Replacement and Alterations

(The requirements in Subsection 1.3.2., "All Systems", shall be read together with the following Articles)

1.3.3.1. General Requirements

  1. Unless expressly permitted otherwise in this Standard, all replacement roofing shall conform to the requirements for new roofing in this Standard.

1.3.3.2. Complete Roof System Replacement

  1. See the requirements throughout this Standard, which apply to both new construction and replacement of a roof system.

1.3.3.3. Partial Roof Replacement

  1. See the requirements throughout this Standard, which apply to both new construction and replacement of a roof membrane.

1.3.3.4. Membrane Recovering

(See Article 1.1.4.4.)

  1. All wet material identified by either the independent moisture detection survey or through cut tests shall be removed in the course of construction.
  2. When recovering uninsulated systems,
    1. deteriorated wood decks must be repaired with new material of like kind and quality; a new roof system shall not be installed on a compromised deck,
    2. the existing membrane system must be
      1. clean and free of debris, gravel, or blisters, and
      2. cut at the perimeter change in plane to relieve any tension or distortions in the membrane, and
    3. the existing field and flashing membranes must be overlaid with a mechanically attached, inorganic moisture-resistant insulation overlay board acceptable to the Guarantor, secured to conform to the requirements in Part 3.
  3. When recovering conventionally insulated systems, the existing membrane must be cut through
    1. in a grid pattern measuring no larger than 6m x 6m (approximately 20' x 20'), and
    2. around the perimeter of the roof area, no more than 0.2 m (8") from the edge.
  4. A grid-cut field membrane must be overlaid with a mechanically attached, inorganic moisture-resistant insulation overlay board acceptable to the Guarantor.
  5. When expanded polystyrene insulation (EPS) is present in an existing roof system, the existing membrane must be overlaid with at least one layer of 50.8 mm (2”) mineral wool or polyisocyanurate insulation, in combination with a RoofStar-accepted insulation overlay board (as required).
  6. New membrane system materials must be properly secured to the underlying roof assembly.
  7. All membrane recovering projects must incorporate only new
    1. strip-in flashings for roof penetrations (Ref. Part 12),
    2. roof drains (cast-iron roof drains in usable condition are exempted from this requirement; see Article 11.3.3.2.), and
    3. linear metal flashings (Ref. Part 13).

1.3.3.5. Tie-ins, Additions, and Alterations to Existing Roofing

  1. Where a new roof adjoins and ties into an existing roof, the two areas must be isolated and separated by a curb joint securely attached to the structure and waterproofed in keeping with the requirements for control joints ( Article 10.1.6.2. and Article 10.3.6.2.).
  2. If the Design Authority has obtained from the Guarantor a written Variance that permits the elimination of curb joints, the new roof system must be fully isolated from the existing roof system with a positive water cut-off that renders the new roof system easily distinguishable from the existing roof system.

1.3.3.6. Repairs and Modifications

  1. When a roof system that is covered by an active (unexpired) RoofStar Guarantee has been damaged or otherwise requires repairs, work shall conform to the specifications of the material manufacturers, and to the requirements in this Standard, with respect to (without limitation)
    1. the securement of new materials ( Part 3),
    2. deck or wall overlays ( Part 5),
    3. continuity of air and vapour controls ( Part 6),
    4. thermal resistance and insulation overlays ( Part 7 and Part 8),
    5. membranes ( Part 9),
    6. membrane flashing ( Part 10),
    7. drains ( Part 11),
    8. penetrations and curbs ( Part 12), and
    9. linear metal flashings ( Part 13).
  2. Modifications to an existing roof system covered by an active (unexpired) RoofStar Guarantee, including (without limitation) the addition of new curbs, drains, or penetrations, shall conform to all the requirements in this Standard, or as otherwise stated.

1.3.4. Reserved


Part 2 - Supporting Structures: Decks and Walls

(See Note A-2)

Section 2.1. Design

2.1.1. General

2.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1..

2.1.1.2. Defined Terms

( See Figure 2.1.3.1.-A )

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Common Slope means a roof with a slope 1:3 (4” in 12”, or 18 degrees), up to and including 1:1 (12” in 12”, or 45 degrees).
    2. Deck overlay means a panel material secured to the supporting deck, to render the deck surface suitable for the installation of roofing materials.
    3. Extreme Slope means a roof with a slope greater than 21:12 (21” in 12”, or 84 degrees).
    4. Flat (roof) means a roof with a slope less than 1:6 (2” in 12”, or 9 degrees).
    5. Low Slope means a roof with a slope 1:6 (2" in 12", or 9 degrees, up to but less than 1:3 (4” in 12”, or 18 degrees).
    6. Sheathing means a rigid panel material secured directly onto framing.
    7. Steep Slope means a roof with a slope greater than 1:1 (12” in 12”, or 45 degrees) up to and including 21:12 (21” in 12”, or 84 degrees).
    8. Supporting deck ("deck") means the "structural surface to which a roof system is applied" (adapted from ASTM D1079-18 Standard Terminology Relating to Roofing and Waterproofing).
    9. Wall means a structural or non-structural element in a building that vertically separates space. Walls may separate the outside environment from the interior conditioned space of a building, or they may separate one or more interior spaces from each other (adapted from ASTM E631-15, "Standard Terminology of Building Constructions").
    10. Wall overlay means a panel material secured to the surface of a wall, to render it suitable for the installation of roofing or wall cladding materials.


Figure 2.1.1.2.-A Roof Slope
Forming Part of Article 2.1.1.2.
(Click to expand illustration)
Figure 2.1.1.2.-A (Slopes).jpg

2.1.2. Guarantee Term Requirements

2.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

2.1.3. All Systems

2.1.3.1. General Requirements for Roof Slope

(See Note A-2.1.3.1.)

  1. The Design Authority must design the slope of a roof to achieve proper drainage and must take into consideration the anticipated deflection and settlement of the structure, which may interfere with drainage.
  2. While good drainage is desirable but not always perfectly achievable, and roof waterproofing systems generally are not affected by standing water, each project design should incorporate sufficient slope to move water off the roof surface.
  3. "Sufficient slope", which is subject to conditions that permit evaporation, shall mean that no standing water remains on the roof surface after a reasonable interval following a rainfall (See Note A-2.1.3.1.(4)).
  4. Roof slope should be increased beyond the minimums published in this Standard when local climate conditions, such as rainfall frequency or severity, result in ongoing or significant ponding conditions (see Article 2.1.3.2. and Article 2.1.3.3. for minimum requirements).
  5. Drainage (slope toward plumbing drains) should be achieved (in descending order of best practices) with
    1. four-way slope to drain,
    2. two-way slope to drain, in combination with crickets between drains,
    3. slope to a common valley, or to gutters, or
    4. positive sloping valleys to drains (highly recommended).
  6. The use of drain sumps, designed to isolate collected water for the drain, is highly recommended, but sloping the perimeters of a sump is not required (See also Article 11.1.3.1., "Principles of Design").

2.1.3.2. Roof Slope for New Construction

  1. All new construction roofs must be designed and built with a slope of no less than 2% (1/4” in 12”), measured on the primary sloped planes of the roof.

2.1.3.3. Roof Slope for Replacement Roofing

  1. Replacement roof systems may qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee without correcting poor drainage, though the elimination of ponding (standing water) is strongly recommended.

2.1.3.4. Deck Condition and Suitability for Roofing

  1. The Code having jurisdiction prevails in all cases except where it is exceeded by the requirements published in this Standard.
  2. Notwithstanding the requirements in this Standard, the RoofStar Guarantee does not cover the supporting deck material or its attachment to the building structure, which is the responsibility of the Design Authority and the building contractor.
  3. The supporting deck must be dimensionally stable, resist deflection from dead and live loads, and must be capable of accommodating roof system component movement.
  4. Walls, parapets, curbs, blocking, and penetrations should be constructed or placed by other trades prior to the commencement of roofing work.

2.1.3.5. Drainage Around Obstructions

  1. Curbs that span 2438.4 mm (96") or more when measured perpendicular to roof slope, across the direction of drainage, should be designed with a cricket to divert water around the curb.

2.1.4. Reserved

2.1.5. Roof Decks

2.1.5.1. Steel Roof Decks

(See Note A-2.1.5.1.) (See also Part 9 and Part 10 for substrate preparation requirements)

  1. Steel decks must be acceptable to the manufacturer and must conform to either
    1. ASTM Standard Specification A653 / A653M, "Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process": Structural (Physical) Quality, minimum Grade 33, with a design thickness of 22-gauge (0.759 mm) or greater and a minimum zinc coating designation Z275, or
    2. ASTM Standard Specification A792 / A792M, "Steel Sheet, Aluminum-Zinc Alloy-Coated by the Hot-Dip Process": General Requirements, minimum Grade 33, with a design thickness of 22-gauge (0.759 mm) or greater and a minimum aluminum-zinc alloy coating designation AZ150.

2.1.5.2. Concrete Roof Decks

(See Note A-2.1.5.2.)

  1. Cast-in-place and precast concrete decks must cure for at least 28 days before receiving an adhered roof membrane ("adhered", as it is used in this requirement, means fully or intermittently bonding any membrane to the deck with an adhesive, hot asphalt (bitumen), or heat), but this limitation may be reduced if
    1. both the building envelope engineer and the manufacturer expressly permit membrane application within the first 28 days after pouring, and
    2. their respective signed letters of permission are furnished to the Guarantor forthwith, to be included with the project record.
  2. Shotcrete-formed concrete decks are not an acceptable substrate for the application of sheet membranes.

2.1.5.3. All Wood Roof Decks

(See Note A-2.1.5.3.)

  1. Wood decks
    1. must conform to the material requirements of the Code (see "British Columbia Building Code", Division B, Part 9, Article 9.23.16.2.. "Material Standards"),
    2. shall be free of loose knots or cracks,
    3. shall have a moisture content acceptable to the manufacturer (for self-adhered or adhered membranes, moisture content shall not exceed 19%; Ref. Canadian Wood Council, "Moisture and Wood"), and
    4. shall be secured to other supporting structural elements of the building in keeping with the published requirements of the Code having jurisdiction; specifying the structural suitability of fasteners is the responsibility of the Design Authority.
  2. Differential edge movements or deflection exceeding 1/360 of the span must be prevented
    1. by constructing the deck with tongue-and-groove plywood, and supporting the non-grooved edges with joists or solid blocking, or
    2. by supporting butt joints at unsupported edges with solid blocking.
  3. All mass timber or wood board decks must be covered with a properly secured, suitable overlay to
    1. ensure the integrity of the membrane as mass timber elements contract and expand, and
    2. protect membranes from wood sap or deck surface irregularities and protruding fasteners; plywood and non-veneered panel decks are exempted from this requirement.
  4. Securement of overlaid sheathing shall conform to the requirements for wood decks in this Part.
  5. All types of wood decks should be roofed promptly after installation.

2.1.5.4. Plywood Roof Decks

  1. Plywood panels should conform to CSA 0121, “Douglas Fir Plywood”, CSA 0151, “Canadian Softwood Plywood”, or CSA 0153, “Poplar Plywood”, but in any event must conform to the requirements published in the Code having jurisdiction (See Note A-2.1.5.4.(1)).
  2. All plywood decks (notwithstanding the minimum requirements for plywood used to overlay mass timber and wood board decks; see Article 2.1.5.5., Article 2.1.5.6., and Article 2.1.5.7.) shall be constructed to conform to the "British Columbia Building Code" for either Part 3 or Part 9 buildings, and shall be
    1. at least 12.7 mm (1/2”) thick, unless exceeded by the specified securement design (Ref. Part 3, "Securing the Roof Assembly"),
    2. free of loose knots and cracks, which are considered defects and must be covered with sheet metal, mechanically fastened in place,
    3. securely fastened to roof framing, and installed so that the surface grain (plywood) runs at right angles to the roof framing,
    4. properly gapped between panels, and
    5. fully supported along all panel edges.
  3. When a plywood deck is intended to support a protected roof system and a Vegetated Roof System,
    1. the deck and any vertical planes that contact the vegetated roof system should be pressure-treated tongue-and-groove plywood at least 19.05 mm (3/4”) thick, but when the existing deck and adjoining wall surfaces are untreated wood, they should be overlaid with no less than one layer of an RGC-accepted deck overlay panel listed in Division C of this Manual (See Note A-2.1.5.1. Suitability of Roof Deck in the "RGC Standard for Vegetated Roofs"), and
    2. the Design Authority shall be responsible to calculate the anticipated live and dead loads of the system and design suitable approaches to mitigate deflection.

2.1.5.5. Mass Timber Roof Decks

(See Note A-2.1.5.5.)

  1. Mass timber decks, which include cross-laminated timbers (CLT), nail-laminated timbers (NLT), dowel-laminated timbers (DLT), and traditional glue-laminated timbers (Glulam), are acceptable to the Guarantor and do not require an overlay, but when an overlay is required by the manufacturer it must be plywood conforming to the material requirements in Article 5.2.1.1.
  2. A mass timber deck that will support a vegetated roof system may be overlaid with a vapour permeable membrane, followed by screw-fastened marine-grade T&G plywood at least 19.05 mm (3/4”) thick, to which the roof system may be applied .

2.1.5.6. Non-veneered Panel Roof Decks

(See Part 9, "Roof Field (Membrane Systems)")

2.1.5.7. Wood Board Roof Decks

  1. Wood board decks should be of sound seasoned lumber, properly secured to the supporting structure.
  2. Wood board decks must be overlaid with plywood conforming to Article 5.2.1.1., to render the deck suitable for roofing.

2.1.6. Reserved

2.1.7. Walls

(See Note A-2.1.7.)

2.1.7.1. General

  1. Wall surfaces must be clean, dry, and smooth, suitable for the application of roof system materials.
  2. Wood or steel-stud walls must be sheathed with a material suitable for adhering membranes and securing metal flashings; when sheathing is unsuitable, it must be overlaid with an accepted wall overlay.
  3. Sheathing is considered a wall surface for the purpose of this Standard.
  4. Wall surfaces suitable for receiving waterproofing materials must extend beyond the maximum installed height of the waterproofing, but in any event must be installed at least 203.2 mm (8”) above the finished roof system surface (For wall overlays, refer to Article 5.2.1.3.).
  5. Indirect connections between walls and roofs require a control joint (See Note A-10.1.6.2.).

2.1.8. Electrical Cables and Boxes

(See Note A-2.1.8. concerning electrical systems, fire and shock hazards, and Rule 12-022 of the Canadian Electrical Code, Part I)

2.1.8.1. New Construction

  1. Electrical cables, raceways or boxes shall not be installed within a roof assembly (Figure 2.1.8.1.-A).
  2. Electrical cables, raceways or boxes shall not be installed on the underside of a roof assembly, unless
    1. the supporting deck structure equals or exceeds 76.2 mm (3”) in thickness (Figure 2.1.8.1.-B), or
    2. the cables, raceways or boxes are installed and supported so there is a separation of not less than 38.1 mm (1-1/2") measured between the underside of the roof assembly and the electrical installation (Figure 2.1.8.1.-C).
  3. Notwithstanding either (1) and (2), cables or raceways shall be permitted to pass through a roof assembly for connection to electrical equipment installed on the roof, provided that the passage through the roof is a part of the roof assembly design.
  4. Electrical cables installed above the roof assembly should be elevated to permit proper support, roof maintenance and future replacement roofing (Figure 2.1.8.1.-D).


Figure 2.1.8.1.-A
Prohibited Installation of
Electrical Conduit

Forming Part of Sentence 2.1.8.1.(1)

(Click to expand)
Figure 2.1.8.1.-B
Roof Decks and Electrical Conduit
Installation

Forming Part of Clause 2.1.8.1.(2)(1)
(Click to expand)
Figure 2.1.8.1.-A (Electrical).jpg Figure 2.1.8.1.-B (Electrical).jpg
Figure 2.1.8.1.-C
Minimum Separation Between Roof Assembly
and Electrical Conduit

Forming Part of Clause 2.1.8.1.(2)(2)

(Click to expand)
Figure 2.1.8.1.-D
Electrical Conduit Elevated Above
Roof Assembly

Forming Part of Sentence 2.1.8.1.(4)

(Click to expand)
Figure 2.1.8.1.-C (Electrical).jpg Figure 2.1.8.1.-D (Electrical).jpg


2.1.8.2. Roof Replacement and Alterations

  1. If existing electrical cables or boxes do not conform to the requirements in Article 2.1.8.1., the Design Authority must consider the attachment of the roof system above the electrical system, and the requirements set out in Part 3, "Securing the Roof Assembly".
  2. The Design Authority should
    1. specify protection of existing electrical cables and boxes (a 4.76 mm (3/16”) steel plate may be used to minimize the possibility of fastener penetration and cutter damage, but protection plates may interfere with mechanical fasteners used to secure the roof system against wind uplift, even for future replacement roofing), and
    2. provide the building owner with detailed as-built drawings that accurately map the location of electrical cables and boxes.

Section 2.2. Materials

2.2.1. Material Properties

2.2.1.1. Sheathing for Framed Walls

  1. Framed wall sheathing must be
    1. moisture resistant fibreglass-faced silicon treated gypsum core board, with a minimum thickness of 12.7 mm (1/2”) (These panels are specifically designed to receive roof membranes and may be installed horizontally or vertically).
    2. fibre-mat reinforced cement boards with a minimum thickness of 9.53 mm (3/8"), or
    3. plywood, having a minimum thickness of 12.7 mm (1/2”).
  2. Where wall sheathing is unsuitable to receive roofing materials, refer to Part 5, "Deck and Wall Overlays".

Section 2.3. Application

2.3.1. Guarantee Term Requirements

2.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

2.3.2. All Systems

2.3.2.1. Construction of Decks and Walls

  1. Unless otherwise permitted and described in this Standard, the construction of deck and wall structures, and their suitability for the application of roofing materials, is the responsibility of other trades.



Part 3 - Securing the Roof Assembly

YVR Wind 1 (short).gif

Click on the gif above to see the full high-definition video, which illustrates why roof system securement requirements matter (NOTE: the video shows a mechanically fastened, conventionally insulated EPDM roof system constructed to the RoofStar Guarantee Standard of the time (2013). The membrane "flutter" in wind is common for this type of roof system).

Section 3.1. Design

3.1.1. General

3.1.1.1. Scope

(See Note A-3.1.1.1.)

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.
  2. This Part applies to all new roofs, and to both full and partial replacement roof systems.
  3. This Part sets out the requirements for
    1. material substitution (applicable to Tested Assemblies),
    2. fastener and adhesive application (minimum numbers and spacing),
    3. roofs that support overburden, or fixed amenities and equipment, and
    4. roofs where only part of the system must be replaced.
  4. Conventionally insulated roof systems designed and constructed with sheet membranes must be secured using
    1. a Tested Assembly (a membrane roof system, together with a specified roof deck, tested for its wind resistance capabilities using CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition)(See Note A-3.1.1.1.(4)), or
    2. an Assembly with Proven Past Performance (an existing, representative roof system, together with a specified roof deck, which is used as a “proven” pattern for securing a new roof system on the building under consideration; see Article 3.1.4.3.).
  5. When neither of the foregoing options is available to the Design Authority to conform to the Code, the roof system must be secured using a custom engineered design (See Article 3.1.4.4.).

3.1.1.2. Intent

(See Note A-3.1.1.2.)

  1. The requirements in this Part intend to support and conform to or exceed the Building Code.

3.1.1.3. Limit of Liability under RoofStar Guarantee

  1. Notwithstanding Article 3.1.1.2., the materials presented herein are based on an interpretation of the Code and are not the Code itself; therefore, the reader is responsible to exercise good judgement, and to read, understand and comply with the Code, as and how it applies to the reader’s particular project and its design requirements.
  2. Where the Code can be shown to exceed the requirements, guiding principles, and recommendations of this Part or any related Part in this Standard, the Code shall prevail.
  3. Compliance with this Part or the Code does not guarantee that a roof will not succumb to forces exerted by wind, and therefore neither the Guarantor nor the Contractor will accept any responsibility for damage to, or failure of, a roof system caused by wind; too many variables beyond the control of this Standard affect the wind resistance performance of a roof system, including (without limitation)
    1. the continuity or discontinuity of air and vapour control layers of the entire building enclosure,
    2. openings in the building (windows and doors, which are often occupant-controlled and not static), and
    3. wind strength, which may exceed the codified numeric wind speed values used to calculate wind resistance for the roof system (Ref. "British Columbia Building Code 2024", Division B, Appendix C, "Table C-1").

3.1.1.4. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. CSA Standard means the CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition).
    2. CSA VRA Standard means the CSA-A123.24, “Standard test method for wind resistance of vegetated roof assembly” .
    3. Registered Professional has the same meaning as that used in the "British Columbia Building Code 2024", Division C, Article 2.2.1.2., "Structural Design".
    4. Specified Wind Load means the calculated force of wind exerted on the roof of a specific building, according to the requirements in the "British Columbia Building Code 2024", Division B, Part 4, Section 4.1., "Structural Loads and Procedures".
    5. System of securement means a specific pattern of mechanical fasteners or adhesives, including specific materials or brands, size, and spacing.

3.1.2. Guarantee Term Requirements

3.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

3.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. comply with the higher securement requirements when enhanced roof system securement is required by the membrane manufacturer, to meet their system warranty requirements ("enhanced securement" may exceed the securement stated or specified in a Tested Assembly, an Assembly with Proven Past Performance, or a custom-engineered design; see also Article 1.1.2.1., "RoofStar 15-Year Guarantee", for further general requirements).

3.1.2.3. RoofStar Vegetated Roof Guarantee

  1. To qualify for a RoofStar Vegetated Roof Guarantee, the supporting roof assembly shall
    1. comply with the requirements in this Part for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee,
    2. be acceptable to the manufacturer as support for a vegetated roof system, and
    3. comply with the related requirements in the “RGC Standard for Vegetated Roofs”.

3.1.3. All Systems

3.1.3.1. Responsibility for Design

  1. The Design Authority is responsible for determining Specified Wind Loads for each roof system and each roof area of a project, including roofs that support Vegetated Roof Systems or any other overburden, amenities, or equipment.
  2. Acceptance of a roof for a RoofStar Guarantee is predicated on the assumption that the Design Authority has performed Due Diligence with respect to Specified Wind Loads and has provided the Contractor with sufficient information to construct a roof system that complies with the Code.

3.1.3.2. Calculation of Specified Wind Loads

  1. A registered professional "skilled in the work concerned" must perform or validate the calculation of Specified Wind Loads (See the "British Columbia Building Code 2024", Division C, Part 2, Article 2.2.1.2., "Structural Design"), using
    1. the "Wind Uplift Resistance Calculator" (formerly "Wind-RCI"), or
    2. the formulae and procedures in the "British Columbia Building Code 2024", Division B, Part 4, Subsection 4.1.7.,"Wind Load" (See Note A-3.1.1.1.).
  2. Each roof area, at each level (elevation), shall be divided into three principal roof zones ( Figure 3.1.3.2.-A ), and the Design Authority shall be responsible for calculating the Specified Wind Loads for each zone (Ref. the "British Columbia Building Code 2024", Division B, Part 4, Article 4.1.7.6., "External Pressure Coefficients for Low Buildings").
  3. Roof zones are defined in this Standard as follows:
    1. Field (F) – the interior of the roof bounded by the Edge and the Corners.
    2. Edge (E) – the perimeter zone (minus the corners), measured as either 10% of the smallest building width ("least horizontal dimension"), or 40% of the building height, whichever is less. Notwithstanding the requirements in the "British Columbia Building Code", the Edge zone shall not be less than 2.0 m (7').
    3. Corner (C) – part of the perimeter but not less than 2.0 m x 2.0 m (7’ x7’) in size, the Corner area is defined by the Edge in both directions at the corners. Where the roof geometry includes an inside corner, the corner zone dimensions shall be the same as those for an outside corner, applied equidistant in each direction from the inside corner ( Figure 3.1.3.2.-A ).


    Figure 3.1.3.2.-A Principal Roof Zones
    Forming Part of Article 3.1.3.2.
    (Click to expand illustration)
    Figure 3.1.3.2.-A (Wind Zones).jpg


  4. A roof area that is divided into smaller segments by means of control joints (roof dividers, i.e., a fire wall) or expansion joints, shall be considered one roof area for the purpose of calculating the Specified Wind Loads, unless the height of a control joint or expansion joint exceeds 1 m (39"), in which case the Specified Wind Loads for each roof segment shall be calculated separately (See Figure 3.1.3.2.-B ).
  5. When a building is designed with multiple roof levels (at different elevations), and the roofs are adjacent each other (having a common wall), the Specified Wind Loads for each level, and for each roof area on that level, shall be calculated separately from loads for the adjacent level, unless the elevation difference between adjacent roof levels is less than 1.524 m (5’) (See Figure 3.1.3.2.-B ).
  6. When the shape of a single-level roof varies in width or length, the smallest width dimensions shall be used in the calculation of Specified Wind Loads (Ref. “minimum effective width” as defined in the "British Columbia Building Code", Division B, Part 4, Article 4.1.7.2., "Classification of Buildings").

    Figure 3.1.3.2.-B Roofs Adjacent to Each Other
    Forming Part of Article 3.1.3.2.
    (Click to expand illustration)
    Figure 3.1.3.2.-B (Wind Zones).jpg


  7. When a roof area intersects the corner of a wall, the Edge zone on either side of the wall corner must be treated as a roof Corner (2 x C) ( Figure 3.1.3.2.-B ).
  8. When an existing roof system is specified for partial replacement, the Design Authority must
    1. calculate the Specified Wind Loads for the roof,
    2. determine if securement of the remaining roof components (left in situ) is sufficient to resist the Specified Wind Loads,
    3. determine a suitable method of securement or have the system of securement engineered, and
    4. calculate and design securement for any overburden, amenities, or equipment.
  9. Roof systems should be designed in conjunction with the electrical systems for the building, to avoid unnecessary interference with roof system securement (See also Subsection 2.1.8., "Electrical Cables and Boxes").
  10. Mansards are a roof system and are therefore subject to the requirements in this Part.
  11. Securement of an adjoining water-shedding system shall be made in accordance with the requirements in the applicable Standard.
  12. Wind loads for a roof assembly supporting a vegetated roof system shall be determined in accordance with the requirements of the Building Code and Resistance to Specified Wind Loads | Article 3.1.3.3.] of the “RGC Standard for Vegetated Roofs”.

3.1.3.3. Resistance to Specified Wind Loads

  1. The wind uplift resistance capabilities of the selected roof system must equal or exceed the Specified Wind Loads calculated for each roof zone to which the system will be applied (see Article 3.1.3.2.).
  2. Engineered designs to resist wind uplift may refer to the "British Columbia Building Code", Div. B, Appendix C, "Table C-2", which lists various types of loads, including wind loads, for specific reference locations throughout the province.

3.1.3.4. Resistance to Other Loads

  1. In addition to its capacity to resist Specified Wind Loads, the roof system must be capable of resisting or accommodating
    1. all anticipated live and dead loads, including (without limitation) other environmental loads, such as rain and snow, expected for the building’s size and location,
    2. gravity ("drag") loads,
    3. loads from overburden (See Part 14), and
    4. thermal expansion and contraction of the roof system components.
  2. Where the roof is designed to support a vegetated roof system, consideration for other loads shall conform to the requirements in Article 2.1.4.1. of the “RGC Standard for Vegetated Roofs”.

3.1.3.5. Submittals

  1. The Guarantor must receive from the Contractor, prior to construction of the project and to document the roof system record,
    1. a Tested Assembly report supplied or endorsed by a manufacturer, including documentation of the substitution of any materials identified in that test report,
    2. a letter in support of an Assembly with Proven Past Performance , as required in Article 3.1.4.3.(2), or
    3. a custom-engineered system for securing the roof assembly.

3.1.4. Conventionally Insulated Roof Systems

(The requirements in Subsection 3.1.3., "All Systems", shall be read together with the following articles)

3.1.4.1. Securement Against Specified Wind Loads

(See Note A-3.1.4.1.)

  1. New and fully replaced conventionally insulated systems shall satisfy the requirements of the "British Columbia Building Code" and this Part, and shall be (when applicable)
    1. an Adhesive Applied Roof System ("AARS"),
    2. a Partially Attached Roof System ("PARS"), or
    3. a Mechanically Attached Roof System ("MARS"),

    which may be specified as

    1. a Tested Assembly,
    2. an Assembly with Proven Past Performance, or
    3. an assembly with custom-engineered securement.

3.1.4.2. Specifying a Tested Assembly

(See Note A-3.1.4.2.)

  1. Only roof assemblies that have been tested by qualified facilities wholly independent of roof system manufacturers, using CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition), will be considered valid Tested Assemblies, for the purposes of this Standard (See here for a list of qualified testing agencies).
  2. The Design Authority is strongly encouraged to specify the application of a Tested Assembly, for any design of a new or fully replaced membrane waterproofing roof system.
  3. The Design Authority must use only the test observation readings that have been adjusted for the "Safety Factor" (CSA-A123.21, prior to the 2019 edition) or the "Resistance Factor" (CSA-A123.21, 2019 and newer), which must equal or exceed the highest Specified Wind Loads for the roof (this adjusted value is called the Dynamic Uplift Resistance, or DUR. See Figure 3.1.4.2.-A ).
  4. When a Tested Assembly report indicates only one system of securement, that system shall be applied to all roof zones; alternatively, zone-specific securement requirements may be extrapolated by a Registered Professional "skilled in the work concerned", using ANSI-SPRI WD-1, "Wind Design Standard Practice for Roofing Assemblies" (see the "British Columbia Building Code", Division B, Part 5, Notes to Part 5, A-5.2.2.2.(4)).


Figure 3.1.4.2.-A Dynamic Uplift Resistance
Forming Part of Article 3.1.4.2.
(Click to expand illustration)
Figure 3.4.jpg

3.1.4.3. Specifying an Assembly with Proven Past Performance

(See the "British Columbia Building Code", Division B, Part 5, Notes to Part 5, A-5.1.4.1.(5) for an expanded explanation of the tests for "proven past performance")

  1. A new conventionally insulated roof assembly (the new roof assembly) may be designed using a model roof assembly as a reference (the roof Assembly with Proven Past Performance), but only when
    1. a Tested Assembly cannot be used,
    2. the material components identified in a Tested Assembly are not accepted by the RoofStar Guarantee Program, and the test report offers no RoofStar-accepted alternates,
    3. a Tested Assembly is not available because a material or system has not been tested, or because the Specified Wind Loads exceed the capacity of an available or suitable Tested Assembly,
    4. the model roof assembly
      1. is an existing roof assembly constructed on a real, existing building (the model building),
      2. demonstrates resistance to negative wind loads that are the same as, or greater than, the Specified Wind Loads which the new roof assembly must be designed to resist,
      3. has a history of performance equal to or longer than the expected service life of the new roof assembly, and
      4. is designed with only RoofStar-accepted materials that possess properties "identical or superior to those of the...assembly used as a reference" (Ref. the "British Columbia Building Code", Division B, Notes to Part 5, Environmental Separation),
    5. the model building
      1. is similar in dimensions, exposure, openings, and importance to the building that will support the new roof assembly, and
      2. is situated in conditions representative of the building that will support the new roof assembly (the term "representative" refers to conditions that include, without limitation, dynamic loads caused by proximity to other structures because of funneling or building harmonics).
  2. To qualify for a RoofStar Guarantee, a new roof assembly patterned after a model roof assembly and the design using a model roof assembly must be supported with a letter of assurance provided to the Guarantor by the Design Authority, or by the manufacturer of the Assembly with Proven Past Performance, signed by the Principal or a person having the authority of the Principal, stating that the new roof assembly will resist the Specified Wind Loads calculated for the new roof assembly.
  3. A new roof assembly patterned after a model roof assembly may be used for partial roof replacement.
  4. Published approvals issued by an insurer or underwriter, or roof assembly designs warranted or guaranteed by anyone other than the Guarantor, do not satisfy the requirements for a roof Assembly with Proven Past Performance.

3.1.4.4. Specifying a Custom-engineered Securement Design

  1. When, for various reasons, a system of securement cannot be designed using either a Tested Assembly or an Assembly with Proven Past Performance, the securement system must be designed by a Registered Professional "skilled in the work concerned" (See the "British Columbia Building Code", Division C, Part 2, Article 2.2.1.2., "Structural Design").

3.1.5. Uninsulated Systems

(The requirements in Subsection 3.1.3., "All Systems", shall be read together with the following articles)

3.1.5.1. Securement against Specified Wind Loads

  1. All uninsulated roof systems must be designed to resist displacement by Specified Wind Loads, using the options articulated in Article 3.1.4.1.
  2. Where air intrusion into the roof assembly could compromise its securement, every roof assembly design must provide guidance for the installation of control layers, particularly where control layers intersect roof drains, penetrations, or assemblies adjacent to the roof (i.e., walls) (Ref. Part 6, "Air and Vapour Controls").

3.1.6. Protected Roof Systems

(The requirements in Subsection 3.1.3., "All Systems", shall be read together with the following articles)

3.1.6.1. Securement of Ballasted Roof Systems

(See Note A-3.1.6.1.. Also see Subsection 9.1.6., "Protected Roof Systems")

  1. Roof systems secured with stone (gravel) ballast, pavers, or a combination of each, must be designed to resist displacement by Specified Wind Loads, regardless of any overburden the design may call for.
  2. The securement of all roof systems held in place by ballast must be designed by a registered professional "skilled in the work concerned" ("British Columbia Building Code", Division C, Section 2.2., "Administration"), and ballast rates shall conform to
    1. the minimum requirements in Table 3.1.6.1. (Ref. Article 3.3.5.1., "Ballasted Systems", and Subsection 9.3.6., "Protected Roof Systems"), or
    2. extrapolated values using ANSI-SPRI RP-4 (latest edition), "Wind Design Standard for Ballasted Single-ply Roofing Systems".
  3. Stone ballast size for all ballasted roof systems shall conform to ASTM D7655/D7655M-12, "Standard Classification for Size of Aggregate Used as Ballast for Membrane Roof Systems".
  4. To facilitate resistance to Specified Wind Loads,
    1. a filter fabric is required beneath gravel or paver ballast, and
    2. a protection layer is required beneath crushed ballast.
  5. On roofs specified to utilize stone ballast, no fewer than two parallel rows of pavers should be considered for Corner and Edge zones, to prevent or reduce wind scouring of the gravel.
  6. When pavers are selected as ballast for a roof system, the Design Authority must determine the support and placement of pavers to resist displacement by Specified Wind Loads.
  7. Vegetated roof systems designed as ballast for a protected membrane roof assembly shall be designed in accordance with the requirements in Part 3 of the “RGC Standard for Vegetated Roofs”.


Table 3.1.6.1.
Minimum Requirements for Stone Ballast

Forming Part of Article 3.1.6.1.
(Note: these requirements apply only where no other guidance for stone ballast
has been provied by the Design Authority)
XPS Insulation
Thickness
Stone Ballast Required Weight Minimum Ballast Depth
(approximate)
Up to 50.8 mm (2") 60 Kg/M2 (12 lb./sf) 44.45 mm (1-3/4")
76.2 mm (3") 80 Kg/M2 (17 lb./sf) 57.15 mm (2-1/4")
101.6 mm (4") 108 Kg/M2 (22 lb./sf) 76.2 mm (3")
125 mm (5") 132 Kg/M2 (27 lb./sf) 88.9 mm (3-1/2")
152.4 mm (6") 156 Kg/M2 (32 lb./sf) 107.95 mm (4-1/4")
177.8 mm (7") 180 Kg/M2 (37 lb./sf) 125 mm (5")
203.2 mm (8") 204 Kg/M2 (42 lb./sf) 139.7 mm (5-1/2")
These minimum requirements should be noted by the registered professional
designing the ballast system.

3.1.6.2. Securement of Modified Protected Roof Systems

  1. Modified protected roof systems shall be secured according to the requirements for conventionally insulated roofs supporting overburden.

3.1.7. Roof Replacement and Alterations

3.1.7.1. Complete Roof System Replacement

  1. Complete roof system replacement projects must be designed to secure the new roof system against displacement by Specified Wind Loads.

3.1.7.2. Partial Roof System Replacement

  1. Partial roof replacements must be designed to secure the roof system against displacement by Specified Wind Loads, in keeping with the requirements in Article 3.1.3.2. (See also Article 3.3.6.2.).
  2. When specifying securement for a partial roof replacement, the securement system must be designed and specified by the Design Authority (See also Subsection 1.1.4., "Replacement and Alterations"); nevertheless, mechanical fastening, when practicable, is the recommended method for securing new materials to an existing roof system (See Note A-3.1.7.2.).

Section 3.2. Materials

3.2.1. Material Properties

3.2.1.1. Substituting Materials Used in a Tested Assembly

(See Note A-3.2.1.1.)

  1. When a manufacturer's Tested Assembly incorporates materials (and listed alternates) that are not part of the RoofStar Guarantee Program, the Design Authority must identify appropriate substitutions for those materials from the list of RoofStar-accepted Materials, and obtain
    1. written approval from the technical manager of the manufacturer stating that the substituting material will not reduce the capabilities of the Tested Assembly, or
    2. a letter of support issued by a registered professional qualified to perform the work in Part 4 of the Building Code (Ref. the "British Columbia Building Code", Division C, Part 2, Article 2.2.1.2., "Structural Design").
  2. Any material substitution should
    1. be limited to one (1) material component from the Tested Assembly, but the substitution of more than one material component is permissible provided the substitution complies with the other requirements in this Article, and
    2. be made in keeping with the decision process flows for MARS, PARS and AARS assemblies published in CSA-A123.21, "Standard test method for the dynamic wind uplift resistance of membrane-roofing systems" (latest edition), "Annex F".
  3. Because of its nature, a new roof assembly patterned after an Assembly with Proven Past Performance does not qualify for material substitution.

3.2.2. Securement Materials

3.2.2.1. Fasteners

  1. The minimum requirements in this Article apply to any roof system, regardless of requirements published elsewhere.
  2. The Design Authority should specify the correct type of fastener, keeping in mind
    1. pull-out strength, and
    2. corrosion resistance (contributing factors to fastener corrosion may include dissimilar metal contact, excessive building humidity, corrosive chemicals within components of the roof system, or corrosive elements provided within the building envelope etc.).
  3. Fasteners must be capable of securing the roof system components to resist Specified Wind Loads.
  4. Unless otherwise permitted in writing by the manufacturer, fasteners shall be resin-coated, self-drilling screws manufactured with recessed heads, and must be used in combination with plates, as shown in Table 3.2.2.1.


Table 3.2.2.1.
Minimum Fastener and Plate Requirements

Forming Part of Article 3.2.2.1.
(Note: these requirements apply only where no other guidance for fastener and plate types and sizes has been provided by the Design Authority)
Material Fastener
Size
Plate
Deck overlays #12 73.03 mm (2-7/8”) Hexagonal, 76.2 mm (3”) Round or Square
Insulation #12 73.03 mm (2-7/8”) Hexagonal, 76.2 mm (3”) Round or Square
Insulation Overlays #12 73.03 mm (2-7/8”) Hexagonal, 76.2 mm (3”) Round or Square
Membranes #14 Proprietary

3.2.2.2. Adhesives

  1. Adhesives used to secure any roof system materials must be acceptable to the manufacturer and be capable of resisting Specified Wind Loads.
  2. Adhesives listed in a selected Tested Assembly
    1. must be used to secure applicable layers within the roof system, and
    2. may be substituted only with products listed in the Tested Assembly report.
  3. In the absence of a Tested Assembly, or for adhered and partially adhered roof assemblies with Proven Past Performance, adhesives used to secure new roofing materials must be acceptable to the manufacturer and must be demonstrably capable of resisting Specified Wind Loads.
  4. Bitumen used as a hot-applied adhesive must be Type 3 or SEBS.

3.2.2.3. Stone (Gravel) Ballast

(See also Table 3.1.6.1. in Article 3.1.6.1.)

  1. Stone (gravel) ballast used to secure a roof system must be washed (clean) round or crushed stone and must conform to ASTM D7655/D7655M-12, "Standard Classification for Size of Aggregate Used as Ballast for Membrane Roof Systems", or to Table 3.3.
  2. The minimum requirements in this Article must not be reduced except by a written Variance that shall be endorsed in writing by the owner or the owner's representative, and submitted to the RoofStar Guarantee Program as part of the Guarantee record.


Table 3.2.2.3.
Stone Ballast Size and Grades

Forming Part of Article 3.2.2.3.
Nominal size Percentage Passing
38.1 mm (1-1/2") 100%
25.4 mm (1") 70 - 100%
19.05 mm (3/4") 5 - 20 %
12.7 mm (1/2") 0 - 6 %
4.76 mm (3/16") 0 - 2 %

3.2.2.4. Pavers and Pedestals

  1. Pavers that are partially supported (i.e., with pedestals) should be capable of resisting anticipated loads (i.e., hydraulically pressed concrete pavers).
  2. Pedestals
    1. should be adjustable when a level surface is required,
    2. must be purpose-made, and
    3. must include an integral spacer rib measuring at least a 3.18 mm (1/8”) in width, to uniformly separate pavers.

Section 3.3. Application

3.3.1. Guarantee Term Requirements

3.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

3.3.1.2. RoofStar 15-Year Guarantee

  1. All projects intended to qualify for a RoofStar 15-year Guarantee shall comply with the requirements in this Standard for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. conform to the specified design when enhanced roof system securement is required (See Article 3.1.2.1.).

3.3.2. All Systems

3.3.2.1. Securing Systems with Mechanical Fasteners

  1. Unless otherwise specified by a Tested Assembly, a roof assembly with Proven Past Performance, or a custom-engineered assembly,
    1. fastener patterns shall conform to Tables 3.5. through 3.10.,
    2. the minimum number of fasteners must conform to the requirements in Table 3.4., and
    3. fasteners shall be installed at least 152.4 mm (6”) from panel corners, measured from each edge of the panel, but the precise placement of fasteners shall be confirmed with the manufacturer.
  2. Fasteners used to secure boards from curling, or to secure boards at slope transitions, shall be additional to the minimum number of fasteners and plates required by a Tested Assembly, a roof assembly with Proven Past Performance, a custom-engineered assembly, or the patterns shown in Tables 3.4. through 3.10.
  3. When mechanically attached membranes are installed together with new insulation, the insulation assembly (with or without an insulation overlay) must be held in place independently from the membrane, with no fewer than four (4) fasteners per panel.
  4. Regardless of where fasteners are used in the roof system, when they penetrate and secure another material to a substrate, mechanical fasteners must conform to the requirements illustrated in Figure 3.4. and shall (unless exceeded by the fastener manufacturer’s published requirements)
    1. penetrate through the bottom surface of
      1. steel decks at least 19.05 mm (3/4") (fasteners should penetrate the top flutes only), and
      2. plywood sheathing by at least 19.05 mm (3/4").
    2. penetrate into solid dimensional lumber or concrete by at least 25.4 mm (1").
  5. Unless otherwise provided for in a Tested Assembly report, in the documentation for an Assembly with Proven Past Performance, or by a Registered Professional in a custom-engineered securement system, mechanical fastening of panel materials shall conform to the minimum RGC Guarantee historical requirements in Table 3.3.2.1.-A through Table 3.3.2.1.-G .


Figure 3.3.2.1.-A Fastener Penetration Into or Through Deck
Forming Part of Sentence 3.3.2.1.(4).
(Click to expand illustration)
Figure 3.5.jpg
Table 3.3.2.1.-A.
Minimum Requirements for Mechanical Fastening

Forming Part of Article 3.3.2.1.
(Note: Fasteners may be located within 50.8 mm (2") (in any direction) of the positions shown in the diagrams,
but this must be validated by the manufacturer.)
Material Dimensions Roof Zone (Field, Perimeter, Corner)
F P C
1219.2 mm x 2438.4 mm (48" x 96")
Deck Overlay supporting mechanically attached materials 4 4 4
Insulation or Insulation Overlay supporting mechanically attached materials 4 4 4
Insulation 8 12 15
Insulation Overlays 8 12 15
1219.2 mm x 1828.8 mm (48" x 72")
Insulation 6 8 12
1219.2 mm x 1219.2 mm (48" x 48")
Insulation 5 6 8
914.4 mm x 1219.2 mm (36" x 48")
Insulation 4 6 7
609.6 mm x 2438.4 mm (24" x 96")
Insulation 5 6 8
609.6 mm x 1219.2 mm (24" x 48")
Insulation 4 4 5

3.3.2.2. Securing Systems with Adhesives

  1. Adhesives may be used to secure new roofing materials to an existing roof system, provided the specific application procedures and methods are engineered by or for the Design Authority.
  2. Notwithstanding Sentence (1), the use of adhesive to secure insulation shall conform to Article 7.3.3.1.

3.3.2.3. Securing Roofs with Overburden

  1. Any overburden, including vegetated roof systems, must be installed in keeping with the designed securement methods and systems specified by the Design Authority, and shall also conform to the the requirements in Part 14 .


NOTE: Table 3.3.2.1.-B through Table 3.3.2.1.-G illustrate fastener patterns and placement based on historical Guarantee requirements, to provide optimum wind uplift resistance. These patterns are to be used only when patterns are not provided in a Tested Assembly, a roof assembly with Proven Past Performance, or in a custom-engineered assembly. Fasteners may be located within 50.8 mm (2") of position shown in diagrams in any direction, but this must be validated by the manufacturer.
Table 3.3.2.1.-B.
Minimum Mechanical Fastening Patterns for
Panels 1219.2 mm x 2438 mm (48" x 96")

Forming Part of Article 3.3.2.1.
(Click on drawing to expand)
1219.2 mm x 2438.4 mm (48" x 96")
Field Perimeter Corner
Table 3.4 - 4x8 (4 fasteners).jpg 4 Fasteners Table 3.4 - 4x8 (4 fasteners).jpg 4 Fasteners Table 3.4 - 4x8 (4 fasteners).jpg 4 Fasteners
Field Perimeter Corner
Table 3.4 - 4x8 (8 fasteners).jpg 8 Fasteners Table 3.4 - 4x8 (12 fasteners).jpg 12 Fasteners Table 3.4 - 4x8 (15 fasteners).jpg 15 Fasteners
Table 3.3.2.1.-C.
Minimum Mechanical Fastening Patterns for
Panels 1219.2 mm x 1828.8 mm (48" x 72")

Forming Part of Article 3.3.2.1.
(Click on drawing to expand)
1219.2 mm x 1828.8 mm (48" x 72")
Field Perimeter Corner
Table 3.5 - 4x6 (6 fasteners).jpg 6 Fasteners Table 3.5 - 4x6 (8 fasteners).jpg 8 Fasteners Table 3.5 - 4x6 (12 fasteners).jpg 12 Fasteners
Table 3.3.2.1.-D.
Minimum Mechanical Fastening Patterns for
Panels 1219.2 mm x 1219.2 mm (48" x 48")

Forming Part of Article 3.3.2.1.
(Click on drawing to expand)
1219.2 mm x 1219.2 mm (48" x 48")
Field Perimeter Corner
Table 3.4 - 4x4 (5 fasteners).jpg 5 Fasteners Table 3.4 - 4x4 (6 fasteners).jpg 6 Fasteners Table 3.4 - 4x4 (8 fasteners).jpg 8 Fasteners
Table 3.3.2.1.-E.
Minimum Mechanical Fastening Patterns for
Panels 914.4 mm x 1219.2 mm (36" x 48")

Forming Part of Article 3.3.2.1.
(Click on drawing to expand)
914.4 mm x 1219.2 mm (36" x 48")
Field Perimeter Corner
Table 3.5 - 3x4 (4 fasteners).jpg 4 Fasteners Table 3.5 - 3x4 (6 fasteners).jpg 6 Fasteners Table 3.5 - 3x4 (7 fasteners).jpg 7 Fasteners
Table 3.3.2.1.-F.
Minimum Mechanical Fastening Patterns for
Panels 609.6 mm x 2438.4 mm (24" x 96")

Forming Part of Article 3.3.2.1.
(Click on drawing to expand)
609.6 mm x 2438.4 mm (24" x 96")
Field Perimeter Corner
Table 3.5 - 2x8 (5 fasteners).jpg 5 Fasteners Table 3.5 - 2x8 (6 fasteners).jpg 6 Fasteners Table 3.5 - 2x8 (8 fasteners).jpg 8 Fasteners
Table 3.3.2.1.-G.
Minimum Mechanical Fastening Patterns for
Panels 609.6 mm x 1219.2 mm (24" x 48")

Forming Part of Article 3.3.2.1.
(Click on drawing to expand)
609.6 mm x 1219.2 mm (24" x 48")
Field Perimeter Corner
Table 3.5 - 2x4 (4 fasteners).jpg 4 Fasteners Table 3.5 - 2x4 (4 fasteners).jpg 4 Fasteners Table 3.5 - 2x4 (5 fasteners).jpg 5 Fasteners

3.3.3. Conventionally Insulated Roof Systems

(The requirements in Subsection 3.3.2., "All Systems", shall be read together with the following articles)

3.3.3.1. General Requirements

  1. New and fully replaced conventionally insulated systems must be secured to conform to the Building Code, and shall be capable of resisting displacement by Specified Wind Loads using
    1. a Tested Assembly,
    2. an Assembly with Proven Past Performance, or
    3. an assembly with custom-engineered securement.

3.3.4. Uninsulated Systems

(The requirements in Subsection 3.3.2., "All Systems", shall be read together with the following articles)

3.3.4.1. General Requirements

  1. All uninsulated roof systems that are not secured with ballast shall conform to the requirements in Article 3.1.4.1. for conventionally insulated systems.
  2. Uninsulated roof systems secured with stone ballast, pavers or both must be installed following the requirements in Article 3.3.5.1.

3.3.5. Protected Roof Systems

(The requirements in Subsection 3.3.2., "All Systems", shall be read together with the following articles)

3.3.5.1. Ballasted Systems

(Note: the reader must consult the Design and Application requirements for protected roof systems in Part 9).

  1. Roof systems secured with stone ballast, pavers, or both must be constructed to resist displacement by Specified Wind Loads.
  2. To facilitate resistance to Specified Wind Loads,
    1. a filter fabric is required beneath stone or paver ballast,
    2. a protection layer is required beneath crushed ballast, and
    3. stone ballast must conform to the specified design.
  3. Stone ballast shall
    1. be washed (clean) round or crushed material , and
    2. be selected (according to the specified design) to resist flotation and Specified Wind Loads.
  4. Pavers and unit-type masonry, such as brick or paving stones , must be supported by
    1. purpose-made pedestals conforming to the requirements in Article 3.2.2.4.,
    2. a proprietary drainage layer overlaid with a filter fabric mat, or
    3. a drainage layer of loose aggregate (such as pea gravel) measuring at least 25.4 mm (1”) in depth, installed over a filter fabric.
  5. Pedestals
    1. must permit at least 12.7 mm (1/2″) of vertical separation between the paver and the underlying substrate, to provide airflow for drying surfaces and assist in leveling,
    2. should not impede the flow of water or air, and
    3. should uniformly distribute the dead load of pavers, and other unit masonry products, as well as predicted live loads.
  6. Pavers must be tied together when specified by the design.
  7. When a vegetated roof system is used as ballast, the installation shall conform to Part 10 of the “RGC Standard for Vegetated Roofs” (See also Part 3 in the same Standard, concerning design requirements).

3.3.6. Roof Replacement and Alterations

3.3.6.1. Complete Roof System Replacement

  1. Roof systems that are removed and replaced in their entirety (excluding the air or vapour controls, which may be left in place at the discretion of the Design Authority) must be secured following the requirements for new roof systems.

3.3.6.2. Partial Roof Replacement

  1. When only a portion of an existing roof system is specified for replacement, the new materials must be secured to resist Specified Wind Loads (See also Subsection 1.1.4., "Replacement and Alterations").
  2. Mechanical fastening is the most reliable method for securing new materials installed over an existing roof assembly, but when mechanical fastening is not practicable, the system of securement must be
    1. custom-engineered, or
    2. patterned after a roof assembly with Proven Past Performance, in keeping with the requirements in Article 3.1.4.3.

Part 4 - Materials

Section 4.1. Design

4.1.1. General

4.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

4.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Primary Material means a material used in a roof or grade-level waterproofing system that protects a building interior from water. Primary materials are often exposed to the weather (protected membranes are an exception), and therefore also protect secondary materials from damage. Membranes, metal panels, asphalt shingles, and cedar shakes and shingles, form the core body of materials classified as primary.
    2. Secondary Material means one which forms part of a waterproofing system or water-shedding system, and which may affect the wind resistance characteristics of the entire assembly but is not necessarily exposed to the weather.

Section 4.2. Materials

4.2.1. Material Properties

4.2.1.1. Use of Accepted Materials

(For limitations and exclusions pertaining to materials, see Division A, Article 3.2.1.2.)

  1. All materials installed by the Contractor, for new construction or alterations, must be
    1. newly manufactured (except for reusable insulation; see Article 7.1.3.2.), and may not be recycled without the expressed, written consent of the Guarantor,
    2. accepted by the RoofStar Guarantee Program, and
    3. manufactured by, or listed as acceptable to, the manufacturer of the primary material.
  2. All uninstalled materials must be
    1. protected from weather with wrappers approved or recommended by the manufacturer,
    2. properly stacked, and
    3. secured above ground or on the roof surface.
  3. All installed roofing materials that are susceptible to moisture damage must be made watertight by the end of each workday.
  4. Metals and fasteners must be compatible with each other, to avoid galvanic corrosion which can occur when dissimilar metals contact each other.

Section 4.3. Application

4.3.1. Guarantee Term Requirements

4.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

4.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

4.3.2. All Systems

4.3.2.1. Application of New Materials

  1. All new materials installed as part of the roof system shall conform to the manufacturer's published requirements, unless superseded by this Standard.

Part 5 - Deck and Wall Overlays

(See Note A-5)

Section 5.1. Design

5.1.1. General

5.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

5.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary.

5.1.2. Guarantee Term Requirements

5.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

5.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

5.1.3. All Systems

5.1.3.1. Required Use of Overlays

(See Note A-5.1.3.1.; see also Part 9 and Part 10 for substrate preparation requirements)

  1. A deck or wall overlay must be specified when
    1. a thermal layer is required by the Building Code,
    2. it is required as part of a Tested Assembly, or
    3. the conditions of the deck or wall are unsuitable for receiving roofing materials.
  2. When a roof design includes any type of overburden, the deck overlay on steel decks, or on wood decks less than 25.4 mm (1”) thick, should be at least 15.88 mm (5/8”) thick, to stiffen the supporting surface and reduce deck deflection.

Section 5.2. Materials

(See Division C, "Accepted Materials")

5.2.1. Material Properties

5.2.1.1. Suitability of Overlays

  1. Deck and wall overlays must be
    1. listed in Division C,
    2. acceptable to the manufacturer, and
    3. suitable for, and compatible with, any membrane or panel application.
  2. When plywood is used as a deck overlay, only tongue-and-groove plywood is acceptable and must be
    1. at least 12.7 mm (1/2”) thick when installed over a mass timber deck, or
    2. at least 15.88 mm (5/8”) thick, when the roof supports overburden.

5.2.1.2. Thermal Barrier

  1. When the Code having jurisdiction requires a thermal barrier, any material selected from Division C must be suitable for the purpose.

5.2.1.3. Overlays for Walls

  1. In addition to overlays listed in Division C, walls may be overlaid with
    1. plywood, provided the plywood is least 12.7 mm (1/2”) thick and is pressure-treated when applied over concrete or concrete masonry units (CMU), or
    2. fibre-mat reinforced cement boards with a minimum thickness of 9.53 mm (3/8"), conforming to ASTM C1325 (latest edition), "Standard Specification for Fiber-Mat Reinforced Cementitious Backer Units".

5.2.1.4. Fasteners

  1. Refer to Article 3.2.2.1.

Section 5.3. Application

(This Section shall be read in conjunction with the requirements for substrate preparation in Part 9 and Part 10)

5.3.1. Guarantee Term Requirements

5.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

5.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

5.3.2. All Systems

5.3.2.1. Support, Arrangement, and Securement of Deck Overlays

  1. Deck overlays must be
    1. fully or intermittently supported along all edges by the deck, and
    2. installed in a staggered pattern (offset) 304.8 mm (12") from adjacent board rows (a minus offset tolerance of 50.8 mm (2") maximum will be permitted to compensate for variance in the manufacturer's tolerance of differing board widths and lengths).
  2. Deck overlays shall be affixed to the deck with
    1. mechanical fasteners conforming to the requirements in Article 3.2.2.1.,
    2. polyurethane foam adhesives acceptable to the manufacturer and conforming to the requirements in Article 3.2.2.2., or
    3. a combination of mechanical fasteners and polyurethane foam adhesives.
  3. When mechanical fasteners are used to secure deck overlays, the minimum number of fasteners (in combination with plates) shall be
    1. four (4), for every 1219.2 mm x 2438.4 mm (48" x 96") sheet, or
    2. as specified by a Tested Assembly, when part of a "PARS" or "MARS" conventionally insulated system.

5.3.2.2. Overlays on Steel Decks

  1. RoofStar-accepted deck overlay boards used as a thermal barrier to achieve a specific fire rating must conform to the applicable code and insurance requirements for the roof system.
  2. When the roof system is uninsulated, the deck must be overlaid with at least one 12.7 mm (1/2”) thick layer of
    1. moisture resistant gypsum core deck overlay board, or
    2. plywood.

5.3.2.3. Overlays on Concrete Decks

  1. A deck overlay board is not mandatory on a concrete supporting deck, but when it is specified, it must be installed to conform to the requirements in this Part.

5.3.2.4. Overlays on Wood Decks

  1. A mechanically fastened overlay board is required for any deck structure that does not meet the deck fastening criteria set out in Article 2.1.5.3..

5.3.2.5. Support, Arrangement, and Securement of Wall Overlays

  1. Wall overlay panels must be
    1. mechanically fastened with screw fasteners spaced no more than 304.8 mm (12”) O.C., both vertically and horizontally; fasteners must align with structural supports, and shall be placed
      1. at the perimeters,
      2. at the corners, and
      3. in the field, or
    2. adhered with a polyurethane adhesive, applied with a continuous z-patterned ribbon spaced no less than 304.8 mm (12”) apart.



Part 6 - Air and Vapour Controls

(See Note A-6)

Section 6.1. Design

6.1.1 General

6.1.1.1. Scope

(See Note A-6.1.1.1.)

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

6.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Air barrier means a material that is manufactured and tested to prohibit the passage of air through that material.
    2. Continuity means a sealed, resistive, continuous connection
      1. between control layers that have the same function, and
      2. between a control layer and another material or object it joins to (i.e., a roof drain or penetration).
    3. Control layer means a material used in a roof assembly or wall assembly, that is manufactured and tested to resist or control the movement of air, vapour, or liquid water into or through that assembly.
    4. Vapour retarder means a material that is manufactured and tested to prohibit or regulate the passage of water vapour through that material.
    5. Water resistive barrier (WRB) means a material that is manufactured and tested to resist the transmission of liquid water through the material, and is usually used in wall assemblies.

6.1.2. Guarantee Term Requirements

6.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

6.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

6.1.3. All Systems

6.1.3.1. Responsibility for Design

  1. The Design Authority is responsible to specify
    1. air and vapour control materials,
    2. the placement of continuous air and vapour control layers in relation to a roof system and its components, and
    3. the selection of suitable materials for that application (See Note A-6.1.3.1.).
  2. The Design Authority is urged to review and consider the performance characteristics of materials available for such applications.
  3. Coverage under the RoofStar Guarantee shall be as described in Division A, Article 3.2.1.2..
  4. Notwithstanding coverage provisions in Division A, neither the RoofStar Guarantee Program nor the Contractor will accept any responsibility for damage to, or failure of, the roof system caused by the use or absence of air or vapour control layers.

6.1.3.2. Continuity of Control Layers

  1. The Design Authority, and trades constructing walls and roofs, are jointly responsible for making proper connections (continuity) between air and vapour control systems, including the transitions between wall systems and roof systems.
  2. Where air, vapour, or water control layers intersect a roof drain, overflow drain, scupper drain, or penetration, the intersection must be designed for continuity, and drawings must detail the execution of continuity for the Contractor.
  3. Overflow drains and scupper drains that penetrate wall assemblies must be designed and drawn to prevent air intrusion from the outside environment (Ref. Article 3.1.5.1.).

6.1.3.3. Use of Air Control Materials

  1. The Design Authority is responsible for the selection of air control materials (some air control layers are considered vapour permeable, others vapour-impermeable); roof systems intended to qualify for a RoofStar Guarantee should be designed according to the regulatory design and installation requirements for effective, continuous air control systems.
  2. All materials selected by the Design Authority should conform to the material and performance characteristics required in the "British Columbia Building Code", Division B, Article 5.4.1.2., "Air Barrier System Properties".

6.1.3.4. Use of Vapour Control Materials

  1. Because continuous vapour control layers may be needed to limit “water vapour transmission and condensation, burn protection, and severe climatic conditions” (National Energy Code of Canada for Buildings 2020, Article 5.2.5.3.(1), "Other Considerations"; see also the "British Columbia Building Code", Division B, Article 5.5.1.1., "Required Resistance to Vapour Diffusion"), they are considered discretionary and must be specified by the Design Authority.
  2. Where continuous vapour control layers are required and specified by Code, the RoofStar Guarantee Program requires that a suitable vapour control system be selected by the Design Authority and properly installed by the Contractor in conformity with the vapour control layer manufacturer’s published instructions, and with the Design Authority’s specified details.

6.1.3.5. High-humidity Building Interiors

  1. Careful consideration should be given to the performance characteristics of air and vapour control layers when specifying such a membrane for roof systems constructed over high-humidity building interiors, which may be susceptible to the accumulation of moisture within the roof system unless effective air and vapour controls are installed; these building interiors include (but are not limited to)
    1. swimming pools,
    2. commercial laundry facilities,
    3. large aquariums, and
    4. paper mills.

6.1.3.6. Reserved

Section 6.2. Materials

6.2.1. Material Properties

6.2.1.1. Compatibility with Other Materials

  1. The material selected for air and vapour control layers must be compatible with any other materials in the roof or wall assembly to which the control layer may come in contact, including (without limitation) contact with primers and adhesives, substrates, solvents, and cleaners.

6.2.1.2. Permitted Materials for RoofStar Guarantee

(See Note A-6.2.1.2.)

  1. While responsibility for the selection of suitable air and vapour control layers rests with the Design Authority, a roof designed and built to qualify for a RoofStar Guarantee shall not include
    1. polyethylene sheet plastic, or
    2. bitumen-impregnated kraft paper.

6.2.1.3. Puncture Resistance and Thickness

  1. Air and vapour controls should be installed over a continuous smooth plane, regardless of a material's ability to span voids or spaces in the deck.
  2. Fully supported air and vapour control layers should possess a minimum published static puncture resistance rating of 150 N (34 lbf) (Ref. CGSB-37.56-M for both test method and standard limits) and be either self-adhering or torch-applied; a high puncture resistance is necessary for the membrane to withstand accidental damage during construction.
  3. Where no deck overlay board is installed and the air and vapour control layers are partially unsupported (for example, on a steel deck), the control layers must possess a published static puncture resistance of at least 400 N (90 lbf).
  4. Should the air or vapour control layers be used as a temporary roof during project construction by either the Contractor or by other trades, a minimum 2 mm thick bituminous membrane is recommended.

6.2.1.4. Self-adhered and Torch-applied Materials

  1. Self-adhering or adhesive-applied materials should be considered as alternatives to torch-applied membranes when the substrate to which they will be applied is combustible, or when nearby structures, openings or materials present a fire hazard.
  2. A suitable separation or overlay material may be used as protection from open flame is acceptable; the application of materials to a combustible surface, using a torch, is strictly prohibited.

6.2.1.5. Vapour Controls for Concrete Decks

  1. Because curing concrete releases considerable moisture that can compromise the performance of a roof system, a vapour control layer installed on new concrete decks (28 days or older) must be selected to prevent condensation inside the roof system.
  2. A membrane with a permeability of 0.01 perms (Class I) is recommended for applications on concrete substrates, but the selection of vapour control materials is nevertheless the responsibility of the Design Authority.

Section 6.3. Application

6.3.1. Guarantee Term Requirements

6.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

6.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

6.3.2. All Systems

6.3.2.1. Continuity and Support

  1. The Contractor must
    1. ensure that air and vapour control layers in the roof system field, and at perimeters, are installed to provide at least 101.6 mm (4”) of overlap, for continuity of matching layers in adjacent assemblies,
    2. ensure that air and vapour control layers are sealed to penetrations and drains that pass through or enter the roof assembly, and
    3. seal all control layers to matching layers in adjacent assemblies (i.e., walls), when a roof is replaced.
  2. Installation of all air and vapour control materials must be smooth and uniform, without wrinkles or fish-mouths, and must also conform to the manufacturer’s published requirements and the Design Authority’s design details.
  3. All air and vapour control membrane side and end laps must be fully supported, in the field and at transitions with curbs, parapets, walls, and penetrations.
  4. When self-adhered membranes are applied directly to a steel supporting deck,
    1. membranes should be oriented parallel to the direction of deck flutes, and
    2. membrane laps and changes in plane must be supported by deck flutes, or by flat metal supports secured to the deck to span gaps.
  5. When metal supports are used to span gaps between steel deck flutes, they must be
    1. fabricated from pre-finished steel with a thickness no less than 24-gauge, and
    2. secured to the deck with no fewer than two (2) compatible screw fasteners per flute (See Figure 6.3.2.-A and Figure 6.3.2.-B).
  6. Roof drains, overflow drains, scupper drains, and penetrations must be detailed where they intersect an air, vapour, or water control layer, to provide continuity.

6.3.2.2. Torch-applied Materials

  1. The application of materials to an unprotected combustible material, using a torch, is strictly prohibited.
  2. All combustible materials MUST be protected from open flame by an acceptable separation or overlay material; this includes, without limitation, combustible materials
    1. on decks, walls, blocking, and canted edges, and
    2. that are hidden or obscured within voids, cracks, or orifices.
  3. When a torch-applied membrane is specified over combustible materials, all joints between overlay panels, and at roof-wall transitions, must be sealed with the primary membrane manufacturer’s approved self-adhered membrane or tapes.
  4. Where torch-applied membranes are not permitted or desirable, the installation of bituminous air and vapour control layers should align with the approaches described and required in Subsection 10.3.8., "Alternative Approaches to Sheet Membrane Flashing".

6.3.2.3. Securement on Slopes

  1. Self-adhered membranes applied to slopes greater than 1:6 (2” in 12”) should be additionally secured with mechanical fasteners in locations where slippage may occur, to counter-act material displacement resulting from temperatures that exceed the membrane’s service temperature.


Figure 6.3.2.1.-A Air, Vapour Controls Over Steel Deck
With Metal Support

Forming Part of Sentence 6.3.2.1.(5)
(Click to expand illustration)
Figure 6.3.2.1.-B Air, Vapour Controls Over Steel Deck
With Deck Overlay Panel

Forming Part of Sentence 6.3.2.1.(5)
(Click to expand illustration)
Figure 6.3.1-1.jpg Figure 6.3.1-2.jpg

6.3.2.4. Reserved


Part 7 - Insulation

Section 7.1. Design

7.1.1. General

7.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

7.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Heat-resistant insulation means insulation that resists heat and will not physically or chemically change when exposed to heat greater than 70°C (158°F), including heat from liquefied bitumen. Insulation boards of this type include fibreboard, polyisocyanurate, and mineral fibre ("wool"). Note that "heat-resistant" does not mean or even infer 'fire-proof'. While some heat-resistant insulation materials will resist burning for a time, only mineral fibre insulation will not burn.
    2. Heat-sensitive insulation means insulation that may be physically or chemically altered when exposed to heat greater than 70°C (158°F) — for example, heat from a torch or from liquefied bitumen. Heat-sensitive insulation includes EPS, XPS and polyurethane.

7.1.2. Guarantee Term Requirements

7.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

7.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. incorporate crickets at curbs and sleepers that impede drainage or are wider or longer than 1219.2 mm (48”), to provide positive slope to drains.

7.1.2.3. RoofStar Vegetated Roof Guarantee

  1. To qualify for a RoofStar Vegetated Roof Guarantee, the supporting roof assembly shall
    1. comply with the requirements in this Part for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee,
    2. be acceptable to the manufacturer as support for a vegetated roof system, and
    3. comply with the related requirements in the “RGC Standard for Vegetated Roofs”.

7.1.3. All Systems

7.1.3.1. Responsibility for Design

(See Note A-7.1.3.1.)

  1. The Design Authority is responsible to ensure the design conforms to the Building Code and any other applicable requirements, with respect to
    1. the use of a thermal barrier between the roof deck and the insulation system, and
    2. the minimum required thermal resistance of the insulation system.

7.1.3.2. General Requirements

  1. Selected board insulation products may be used within the membrane roof systems, provided the panels are listed in Division C, and conform to the material specifications in Section 7.2.

7.1.3.3. Use of Existing Insulation

  1. Existing insulation on a roof may be reused (it will be excluded from coverage under the Guarantee, which applies only to new materials), provided
    1. the Design Authority has specified its reuse, and
    2. the condition of the insulation is acceptable to the Design Authority as suitable to satisfy the requirements of the Building Code.

7.1.3.4. Effective Thermal Resistance and Layering

  1. Insulation assemblies with a cumulative thermal resistance greater than RSI-2.64 (R-15) (based on published LTTR values measured at 24°C) must be installed in multiple layers that are offset and staggered (See Section 7.3., "Application").
  2. In a multi-layered assembly, any single layer of insulation may have a thermal resistance greater than RSI-2.64 (R-15) provided no one layer exceeds 60% of the cumulative thermal resistance of the combined assembly of insulation, measured together with the thermal resistance of insulation overlay boards (See Figure 7.1.3.4.-A).
  3. Notwithstanding Sentence (2) above, a maximum thickness of 101.4 mm (4”) per layer of insulation is recommended, to reduce the potential for insulation panel movement, in which may result in poor roof system performance, durability, and thermal resistance (See Note A-7.1.3.4.(3)).
  4. At intersections with insulated curbs and walls, insulation joints at the roof-wall interface must be offset and staggered to minimize or eliminate thermal bridging (See Figure 7.3.2.2.-A) .


Figure 7.1.3.4.-A Effective Thermal Resistance and Layering
Forming Part of Sentence 7.1.3.4.(2)
(Click to expand illustration)
7.1 Insulation Layering.jpg

7.1.4. Conventionally Insulated Systems

(The requirements in Subsection 7.1.3., "All Systems", shall be read together with the following articles)

7.1.4.1. Reuse of Insulation for Membrane Replacement

  1. When a roof is specified for membrane replacement only, the existing insulation may be left in place (Subject to the requirements in Article 1.1.4.3.), but will be excluded from coverage under the Guarantee.

7.1.4.2. Protection of Heat-sensitive Insulation

  1. When heat-sensitive insulation is used in the primary thermal assembly, it must be covered with a heat-resistant insulation at least 50.8 mm (2”) thick (See Note A-7.1.4.2.).

7.1.4.3. Tapered Insulation and Crickets

  1. Tapered insulation that is heat-sensitive and manufactured to cover the entire roof area (commonly referred to as a full slope or taper package) must be installed beneath at least one layer of flat board heat-resistant insulation with a minimum thickness of 50.8 mm (2”).
  2. Tapered insulation
    1. may be located anywhere within the roof system,
    2. may be used in calculating the overall thermal performance of the insulation assembly but this is at the discretion of the Design Authority (See Note A-7.1.3.4.), and
    3. must be installed in multiple soldiered layers when the overall thickness of the tapered insulation assembly is greater than 152.4 mm (6”).
  3. Crickets that provide no thermal resistance value to the roof system and are used only to promote drainage over limited areas of the roof
    1. should be manufactured of heat-resistant insulation, but when crickets are manufactured from heat-sensitive insulation they should be covered with a layer of heat-resistant insulation at least 50.8 mm (2") thick, and
    2. may be installed directly over a roof deck, although this is not recommended (See Section 8.1., "Design", for overlay requirements).

7.1.4.4. Insulating Drain Sumps

  1. To minimize condensation around drains, drain sumps should be adequately insulated for the regional location of the building, regardless of how the average thermal resistance for the roof system is calculated (See Article 11.1.3.1., "Principles of Design").

7.1.4.5. Use of Mineral Fibre Insulation

  1. Bitumen-coated mineral fibre insulation
    1. may be secured with adhesive (See Figure 7.1.4.5.-A ),
    2. may be secured with screw-type fasteners and plates, but this is permissible only when the insulation is subsequently covered with a suitable insulation overlay panel (See Figure 7.1.4.5.-B, Figure 7.1.4.5.-D, Figure 7.1.4.5.-G, and Figure 7.1.4.5.-H ; also Article 8.1.4.2.),
    3. may be installed in multiple layers,
    4. must be the top layer when multiple layers of mineral fibre insulation are specified (See Figure 7.1.4.5.-C ), and
    5. must be covered with a suitable insulation overlay panel when mechanically fastened through the top-most surface or when supporting an overburden (See Figure 7.1.4.5.-E, Figure 7.1.4.5.-F, Figure 7.1.4.5.-G, and Figure 7.1.4.5.-H ; also refer to Article 8.1.4.2. concerning required overlays and use under overburden ).


    Figure 7.1.4.5.-A Use of Mineral Fibre Insulation
    One Layer (AD*)

    Forming Part of Clause 7.1.4.5.(1)(1)
    (Click to expand)
    Figure 7.1.4.5.-B Use of Mineral Fibre Insulation
    One Layer (MF*)

    Forming Part of Clause 7.1.4.5.(1)(2)
    (Click to expand)
    Mineral Wool - Single layer (adhered).jpg Mineral Wool - Single layer (mechanically fastened).jpg
    Figure 7.1.4.5.-C Use of Mineral Fibre Insulation
    Two Layers (AD*)

    Forming Part of Clause 7.1.4.5.(1)(4)
    (Click to expand)
    Figure 7.1.4.5.-D Use of Mineral Fibre Insulation
    Two Layers (HYB*)

    Forming Part of Clause 7.1.4.5.(1)(2)
    (Click to expand)
    Mineral Wool - 2 - layer (adhered).jpg Mineral Wool - 2-layer (hybrid).jpg
    Figure 7.1.4.5.-E Use of Mineral Fibre Insulation
    Two Layers (MF*)

    Forming Part of Clause 7.1.4.5.(1)(5)
    (Click to expand)
    Figure 7.1.4.5.-F Use of Mineral Fibre Insulation
    Two Layers (AD* + Overburden(

    Forming Part of Clause 7.1.4.5.(1)(5)
    (Click to expand)
    Mineral Wool - 2-layer (mechanically fastened).jpg Mineral Wool - 2 layer (adhered - overburden).jpg
    Figure 7.1.4.5.-G Use of Mineral Fibre Insulation
    Two Layers (HYB* + Overburden)

    Forming Part of Clause 7.1.4.5.(1)(5)
    (Click to expand)
    Figure 7.1.4.5.-H Use of Mineral Fibre Insulation
    Two Layers (MF* + Overburden)

    Forming Part of Clause 7.1.4.5.(1)(5)
    (Click to expand)
    Mineral Wool - 2 layer (hybrid - overburden).jpg Mineral Wool - 2 layer (mechanically fastened - overburden).jpg
    * MF = Mechanically Fastened; AD = Adhered; HYB = Hybrid Securement
  2. When bitumen-coated mineral fibre insulation is adhered, torch-applied bituminous membranes may be applied directly to the top insulation panel; the use of an insulation overlay is optional.
  3. Uncoated mineral fibre insulation panels
    1. may be installed in multiple layers, but shall be located below other insulation (bitumen-coated mineral fibre, or as permitted by the manufacturer), and
    2. shall be secured only by mechanically fastening (Adhered, uncoated mineral fibre insulation is not permissible; see Figure 7.1.4.5.-E ).

7.1.5. Uninsulated Systems

(The requirements in Subsection 7.1.3., "All Systems", shall be read together with the following articles)

7.1.5.1. Use of Crickets

  1. Crickets
    1. should be manufactured of heat-resistant insulation, but when crickets are manufactured from heat-sensitive insulation they should be covered with a layer of heat-resistant insulation at least 50.8 mm (2") thick.
    2. may be installed directly over a roof deck, although this is not recommended (See Section 8.1., "Design", for overlay requirements).

7.1.6. Protected Roof Systems

(The requirements in Subsection 7.1.3., "All Systems", shall be read together with the following articles)

7.1.6.1. Insulation Selection

  1. Only extruded polystyrene insulation (XPS) may be specified for a protected roof system.

7.1.6.2. Drainage Mats and Filter Fabric

  1. At least one drainage layer is required in a protected membrane roof system, either above or below the XPS insulation, but
    1. when openings in walls or roof penetrations provide less than 203.2 mm (8”) of clearance, the filtration layer must be water-permeable and the drainage layer shall be below the XPS insulation, to lower the drainage plane and minimize leaks into the building, and
    2. a drainage layer shall be specified above the XPS insulation when any overburden superimposed on the roof system will result in a “vapour-closed” condition (i.e., a vegetated roof system or an impermeable wearing course) .
  2. Subject to the conditions in Sentence (1), a drainage layer below the XPS insulation in a vegetated roof assembly may be omitted (Sentence 6.1.3.1.(5), “RGC Standard for Vegetated Roofs”).
  3. Filter fabric must be specified to cover XPS insulation, to
    1. contain the insulation and thereby prevent ‘insulation stacking’ (displacement) when insulation boards become buoyant in water, and
    2. prevent fines from settling at the membrane level and filling the voids between insulation board joints.

Section 7.2. Materials

(See Division C, "Accepted Materials")

7.2.1. Material Properties

7.2.1.1. General

  1. Only insulation boards accepted for use in the RoofStar Guarantee Program, and acceptable to the membrane manufacturer, may be used to qualify for a RoofStar Guarantee.
  2. The requirement to use on RoofStar-accepted board insulation extends to insulation used in Tested Assemblies (See Article 3.2.1.1., "Substituting Materials Used in a Tested Assembly").
  3. All insulation types shall have a minimum compressive strength of 110 KPa (20 psi) when installed without a cover board under mechanically attached membranes.

7.2.1.2. Material Dimensions

  1. The maximum width and length of insulation boards
    1. installed with adhesive shall be 1219.2 mm (48") (See also Article 7.3.3.1.), and
    2. installed with mechanical fasteners is limited only by the manufacturer.
  2. Insulation installed directly over a fluted steel deck must be thick enough to span the flutes under live loads, without risk of cracking or breakage.
  3. While minimal insulation panel thicknesses are permissible for some designs, some materials are by their nature breakable, and therefore the Design Authority should consider the constructability of the roof system from a material handling perspective and consider specifying a thicker panel.

7.2.1.3. Drainage Mats

  1. Drainage mats used in protected membrane roof assemblies, or used where overburden superimposed on the roof assembly requires an additional drainage layer, shall conform to the requirements in Article 14.2.1.4.
  2. Drainage mats that form part of a vegetated roof assembly shall conform to the requirements in Article 6.2.1.2. of the “RGC Standard for Vegetated Roofs”.

7.2.1.4. Filter Fabric

  1. Filter fabrics for protected membrane roof assemblies shall conform to the requirements in Article 14.2.1.6..

7.2.2. Suitability of Insulation

7.2.2.1. Extruded Polystyrene Insulation

  1. Extruded polystyrene insulation ("XPS") is heat-sensitive and
    1. shall conform to CAN/CGSB-51.20-M87, "Thermal Insulation, Polystyrene, Boards and Pipe Covering", for Type 4 insulation, and to ASTM C578, "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation",
    2. may be used in a conventionally insulated roof system, and
    3. is the only insulation that may be specified and installed in a protected roof system.

7.2.2.2. Expanded Polystyrene Insulation

  1. Expanded polystyrene ("EPS") is heat-sensitive and
    1. shall conform to ASTM C578, "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation", and
    2. shall be specified and installed only in a conventionally insulated roof system, or as crickets in an uninsulated roof system (See also Article 7.1.4.3.).

7.2.2.3. Polyisocyanurate Insulation

(See Note A-7.2.2.3.)

  1. Polyisocyanurate insulation ("Polyiso") is heat-resistant and
    1. shall conform to CAN/ULC-S704, "Standard for Thermal Insulation, Polyurethane and Polyisocyanurate, Boards, Faced", and to ASTM C-1289, "Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board",
    2. shall be manufactured with non-organic facers, and
    3. shall be labeled to identify the manufacturer and the date of manufacture.

7.2.2.4. Mineral Fibre Insulation

  1. Mineral fibre insulation ("Mineral wool") is heat-resistant and
    1. shall conform to ASTM C726-17, "Standard Specification for Mineral Wool Roof Insulation Board", and
    2. shall be specified and installed only in a conventionally insulated roof system.

Section 7.3. Application

7.3.1. Guarantee Term Requirements

7.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

7.3.1.2. RoofStar 15-Year Guarantees

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. incorporate crickets at all curbs and sleepers that impede drainage or are wider or longer than 1219.2 mm (48”), and
    2. incorporate an insulation overlay for all insulated systems (regardless of the insulation type) that must
      1. be at least 6.35 mm (1/4”) thick, and
      2. possess a compressive strength of at least 690 kPa (100 psi) (Ref. Article 8.1.2.1.).

7.3.2. All Systems

7.3.2.1. Procurement of Insulation

  1. All insulation, except insulation that may be specified for re-use (See Article 7.1.3.2.), must be supplied and installed by the Contractor.

7.3.2.2. Alignment, Sizing, and Support

  1. Insulation boards
    1. must be clean, and dry to the touch ,
    2. must be firmly supported,
    3. should be square and should make firm, full contact with adjacent panels,
    4. must be installed with the appropriate grade of expanding spray foam applied to gaps greater than 6.35 mm (1/4”) (this requirement does not apply to extruded polystyrene (XPS) installed in a protected roof system), and
    5. shall not be soldiered and must be laterally offset at least 304.8 mm (12") in two directions , both for adjacent layers and for adjacent row; a minus offset tolerance of 50.8 mm (2") maximum is permissible (See Figure 7.3.2.2.-A ).
  2. Offsets are not required for
    1. sloped insulation boards that are generally installed soldiered fashion to adjacent rows, and
    2. the first layer of overlay board, installed on top of heat-sensitive insulation, which may be soldiered to facilitate joint taping.


    Figure 7.3.2.2.-A Offset and Staggered Layering in Field
    Forming Part of Clause 7.3.2.2.(1)(4)
    (Click to expand illustration)
    7.3 Insulation Offset and Staggered.jpg


  3. On exterior insulated walls, insulation joints at the roof-wall interface must be offset and staggered to eliminate thermal bridging (See Figure 7.3.2.2.-B ).

    Figure 7.3.2.2.-B Offset and Staggered Layering at Wall
    Forming Part of Clause 7.3.2.2.(3)
    (Click to expand illustration)
    Figure 7.3.2.-B (Generic conv.).jpg

7.3.2.3. Insulation Securement

  1. Insulation securement shall conform to the specified design for the roof assembly, calculated to resist the Specified Wind Loads for the roof system.
  2. Mineral fibre insulation shall be installed and secured to comply with the requirements and restrictions in Article 7.1.4.5., "Use of Mineral Fibre Insulation".

7.3.2.4. Protection of Heat-sensitive Insulation

  1. Heat-sensitive insulation must be protected from high temperatures, both during construction and when placed in service, and therefore it must be overlaid with heat-resistant insulation no less than 50.8 mm (2") thick (see Article 7.1.4.2.).

7.3.3. Conventionally Insulated Systems

(The requirements in Subsection 7.3.2., "All Systems", shall be read together with the following articles)

7.3.3.1. Adhesive-applied Insulation

  1. Unless specified otherwise by a Tested Assembly or in an engineered specification (see Article 3.3.2.2, "Securing Systems with Adhesives"), when insulation components are installed with adhesive,
    1. the maximum width and length of an insulation panel shall be 1219.2 mm (48"), and
    2. the maximum length of any insulation overlay panel shall be 2438.4 mm (96").
  2. When extruded polystyrene insulation is adhered with a two-component low-rise polyurethane foam adhesive, the faces of the insulation board must be roughened by planing to achieve optimal adhesion.
  3. Two-component low-rise polyurethane foam adhesive ribbons must be applied
    1. to a clean, dry, and contaminant-free surface,
    2. in parallel runs or in a Z-pattern,
    3. no more than 152.4 mm (6”) from any edge of the board and spaced no more than 304.8 mm (12”) apart, and
    4. in ribbon widths specified by the adhesive manufacturer or, in the absence of manufacturer requirements, 19.05 mm (3/4”) wide.
  4. Roof system components adhered with two-component low-rise polyurethane foam must be
    1. installed immediately in wet adhesive (before a surface skin develops), and
    2. properly placed and weighted in wet adhesive until cured.

7.3.3.2. Insulation Adhered with Hot Bitumen

  1. Hot bitumen used to adhere a roof system
    1. must be applied at minimum rates and temperatures based on the type of product, as published by the material manufacturer and in the Standard for Built-up Roof (BUR) Systems, and
    2. may be applied on slopes up to 1/2:12 (For steeper slopes, select a different method of securement).

7.3.4. Reserved

7.3.5. Protected Roof Systems

(The requirements in Subsection 7.3.2., "All Systems", shall be read together with the following articles)

7.3.5.1. Sequencing of Work

  1. Insulation installed against walls or curbs must be separated from roof membranes with a non-bonding drainage mat or slip sheet.
  2. Insulation must be secured and protected immediately after installation.

7.3.5.2. Drainage Mats

(See also Part 11, "Drainage")

  1. At least one drainage layer is required in a protected membrane roof system and its location within the system shall conform to the design requirements in Sentence 7.1.6.2.(1) .
  2. A drainage mat must be installed below the XPS insulation.
  3. A second drainage layer may be installed above the insulation but is at the discretion of the Design Authority.
  4. If a second drainage layer is specified, a vertical separation space measuring at least 12.7 mm (1/2″) must be preserved between the drainage layer and any ballast or overburden, to permit airflow and to assist in leveling.
  5. Specialized proprietary drainage products must be acceptable to the membrane manufacturer.
  6. Ballast guards must be installed around all roof drains.

7.3.5.3. Filter Fabric

  1. Fabric filter mats must be
    1. installed loose-laid (un-bonded) over the insulation and below any type of ballast or roof covering,
    2. overlapped at all edges a minimum of 304.8 mm (12”),
    3. at least 2438.4 mm x 2438.4 mm (96" x 96") in size, and
    4. slit to fit over roof penetrations or cut out around roof drains and other openings.
  2. Filter fabric must extend up perimeter edges and curbs and must be placed loose (unattached) under metal counter flashings or wall finishes.
  3. When the filtration layer is part of a vegetated roof assembly, the filtration layer shall conform to Article 10.3.2.7. of the “RGC Standard for Vegetated Roofs”.

Part 8 - Insulation Overlays

Section 8.1. Design

(See Note A-8.1)

8.1.1. General

8.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

8.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary.

8.1.2. Guarantee Term Requirements

8.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

8.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. incorporate an insulation overlay on all "conventionally insulated systems, regardless of the insulation type, that must
      1. be at least 6.35 mm (1/4”) thick, and
      2. possess a compressive strength of at least 690 kPa (100 psi).

8.1.2.3. RoofStar Vegetated Roof Guarantee

  1. To qualify for a RoofStar Vegetated Roof Guarantee, the supporting roof assembly shall
    1. comply with the requirements in this Part for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee,
    2. be acceptable to the manufacturer as support for a vegetated roof system, and
    3. comply with the related requirements in the “RGC Standard for Vegetated Roofs”.

8.1.3. Reserved

8.1.4. Conventionally Insulated Systems

8.1.4.1. Required Use of Insulation Overlays

  1. Except as provided in Sentence (4) , all conventionally insulated roof systems must incorporate one layer of an accepted insulation overlay to cover all flat or tapered insulation panels, installed on any plane, whenever any one of the following conditions apply:
    1. The compressive strength of the specified insulation is less than 110 KPa (20 psi),
    2. Specified membranes are adhered or heat-welded (see Table 9.2.1.1. ), or
    3. Overburden will be superimposed on the roof system.
  2. When a conventionally insulated roof system supports overburden, the overlay panels must be
    1. adhered to the insulation (mechanical fastening is not permissible),
    2. selected from the tables in Division C for
      1. asphaltic panels (with or without factory-laminated base sheet membranes),
      2. moisture resistant gypsum-based panels,
      3. panels made of high-density insulation, or
      4. high-density insulation panels with factory-laminated membranes, and
    3. capable of supporting any superimposed loads on the exposed membrane, without compression or distortion of the roof system or any one of its components (See also Article 14.1.3.2., "Loads").
  3. Notwithstanding the requirements in Sentence (2), when the roof assembly supports a vegetated roof system the overlay must be at least 12.7 mm (1/2”) thick and capably resist compression loads equal to or greater than 552 kPa (80 psi) (“RGC Standard for Vegetated Roofs”, Clause 1.1.3.1.(2)(2)).
  4. Except where an insulation overlay is required in Sentence (2), an insulation overlay is optional (not required) when the membrane is self-adhered and the following conditions have been satisfied:
    1. The specified membrane is expressly accepted by the Guarantor for application directly on a specific insulation board without the use of an overlay, and
    2. The specified membrane is expressly approved (in published literature) by the manufacturer for application directly to a specific insulation panel.
  5. Crickets made of heat-sensitive insulation, specified for and installed in a membrane system applied with hot bitumen, shall be covered with no less than
    1. one layer of an accepted overlay panel, provided the panel thickness is at least 12.7 mm (1/2") and the joints between panels are sealed with the manufacturer’s approved self-adhered membrane or tape, or
    2. two layers of an accepted overlay panel, when the thickness of the panel is at least 4.76 mm (3/16").


8.1.4.2. Use Over Mineral Fibre Insulation

(See also Article 7.1.4.5.)

  1. Mineral fibre insulation must be overlaid with a moisture-resistant fibreglass-faced silicon treated gypsum core board measuring at least 12.7 mm (1/2") thick
    1. when the insulation is mechanically fastened, or
    2. when it will support overburden.

Section 8.2. Materials

(See Division C, "Accepted Materials")

8.2.1. Material Properties

8.2.1.1. Insulation Overlay Dimensions

  1. Regardless of the type of insulation overlay, the overall thickness of insulation overlay boards shall not exceed 50.8 mm (2”) (See minimum allowable thicknesses are shown in Table 8.2.1.1. ).
  2. Asphalt-coated fibreboard roof insulation adhered with hot asphalt or an asphalt-based adhesive must be asphalt-coated on the top and bottom surface (Minimum coated two-sides).
  3. Fire guard tape must be 152.4 mm (6”) wide
    1. self-adhering modified bituminous tape acceptable to the membrane manufacturer, or
    2. Type IV fibreglass felt or No. 15 organic felt, applied with hot bitumen or cold adhesive.


Table 8.2.1.1..
Insulation Overlay Dimensions

Forming Part of Article 8.2.1.1.
Overlay Type Minimum Thickness - mm (in.)
Moisture resistant fibreglass-faced silicon treated gypsum core 6.35 (1/4")
High-density insulation 12.7 (1/2")
Fibreboard As listed in this Manual
Mineral wool As listed in this Manual

Section 8.3. Application

8.3.1. Guarantee Term Requirements

8.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

8.3.1.2. RoofStar 15-Year Guarantees

  1. To qualify for a RoofStar 15-year Guarantee, all projects (except as noted in Sentence (2)) shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. incorporate an insulation overlay on all insulated systems (regardless of the insulation type) that must
      1. be at least 6.36 mm (1/4”) thick, and
      2. possess a compressive strength of at least 690 kPa (100 psi).
  2. When a vegetated roof system is constructed on a conventionally insulated roof assembly, the insulation overlay shall conform to the requirements in Sentence 8.1.4.1.(3).

8.3.2. Reserved

8.3.3. Conventionally Insulated Systems

8.3.2.1. Alignment of Overlays

  1. The Contractor shall ensure that the selection and application of insulation overlays conforms to the Design requirements in Section 8.1. of this Part.
  2. Fibreboard shall not be used as an insulation overlay beneath torch-applied membranes.
  3. Insulation overlays
    1. should be square and should make firm, full contact with adjacent panels unless specified otherwise by the manufacturer, and
    2. must be offset at least 304.8 mm (12") from the joints of the insulation layer; a minus offset tolerance of 50.8 mm (2") maximum is permissible.
  4. All insulation overlay boards must be offset from insulation joints by at least 304.8 mm (12”) and shall be offset from adjacent and underlying overlay boards by at least 304.8 mm (12”) ( Figure 8.3.2.1.-A ).
  5. While insulation overlays with a laminated base sheet membrane shall be offset and staggered from the insulation joints, they may be installed soldier-fashioned with each other, but only when this is permissible in the application literature published by the manufacturer.


Figure 8.3.2.1.-A Offset and Staggered Insulation and Overlays
Forming Part of Article 8.3.2.1.
(Click to expand illustration)
8.1 Insulation and Overlays.jpg

8.3.2.2. Mechanical Securement

  1. When mechanically attaching insulation overlay boards, the insulation and overlay boards may be fastened together as one assembly.
  2. Unless otherwise indicated by the system requirements in a Tested Assembly, follow the fastener patterns set out in Article 3.3.2.1.

8.3.2.3. Adhered Securement

  1. Adhered overlays must conform to the design requirements in Section 8.1. of this Part.
  2. Roof system components adhered with two-component low-rise polyurethane foam must be
    1. installed immediately in wet adhesive (before a surface skin develops), applied
      1. to a clean, dry and contaminant-free surface,
      2. in parallel runs or in a Z-pattern, no more than 152.4 mm (6”) from any edge of the board and spaced no more than 304.8 mm (12”) apart, and
      3. in ribbon widths specified by the adhesive manufacturer or, in the absence of manufacturer requirements, 19.05 mm (3/4”) wide, and
    2. properly placed and weighted in wet adhesive until cured.
  3. Hot bitumen used to adhere a roof assembly
    1. must be applied at minimum rates and temperatures published by the manufacturer for the type of bitumen used, and
    2. may be applied on slopes up to 1/2:12 (for steeper slopes, select a different method of securement).

Part 9 - Roof Field (Membrane Systems)

Section 9.1. Design

9.1.1. General

9.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

9.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Manufacturer means the manufacturer of the primary roof covering, unless stated otherwise.
    2. Parallel to Slope means the direction parallel to the angle of a sloped plane.

9.1.2. Guarantee Term Requirements

9.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

9.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. be constructed with membranes conforming to the RoofStar 15-Year Guarantee criteria in Table 9.1.

9.1.2.3. RoofStar Vegetated Roof Guarantee

  1. To qualify for a RoofStar Vegetated Roof Guarantee, the supporting roof assembly shall
    1. comply with the requirements in this Part for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee,
    2. be acceptable to the manufacturer as support for a vegetated roof system (with consideration to added hydrostatic pressure – see Article 1.1.4.1.] in the “RGC Standard for Vegetated Roofs”), and
    3. comply with the related requirements in the “RGC Standard for Vegetated Roofs”.

9.1.3. All Systems

9.1.3.1. General Requirements

  1. All PVC membrane roofs shall be designed to satisfy the requirements of the Code and the requirements in Part 3 of this Standard.
  2. The specifications, details, and installation techniques must conform to the membrane manufacturer's requirements.
  3. Membranes must be selected for their
    1. composition, both in terms of thickness and reinforcement,
    2. performance characteristics in relation to the intended use of the roof, as for example puncture resistance or reflectivity and reduced heat absorption,
    3. application methodology, which may be limited by the type of supporting deck or substrate to which it will be applied, and
    4. seasonal applications (summer and winter grades).
  4. Membranes may not be adhered to lightweight insulation concrete unless expressly permitted by the manufacturer.

9.1.3.2. Control Joints (Roof Dividers)

  1. When control joints (roof dividers) are recommended or required by the manufacturer, or are deemed necessary by the Design Authority, they must be designed following the requirements in Article 10.1.6.2.

9.1.3.3. Securement

(See Note A-9.1.3.3.)

  1. The roof system must be secured to resist displacement by Specified Wind Loads, and therefore the requirements in this Article shall be read together with the requirements in Part 3 of this Standard.
  2. All roof systems, regardless of how the field system is secured, must be mechanically secured at perimeters using the manufacturer's proprietary securement system (Ref. Article 9.3.2.3.(6) and Article 10.1.3.1.).

9.1.3.4. Membrane Protection

  1. Installed membranes must be protected from damage caused by
    1. any walkway surface,
    2. work performed concurrently or subsequently by other trades (the Design Authority is strongly urged to direct the work of other trades through specific, explicit directives in the design specifications), and
    3. chemicals or other contaminants that may adversely impact the roof membrane or other system components, including (without limitation)
      1. animal or vegetable grease,
      2. hot pipes (release valves),
      3. petroleum products or bi-products, and
      4. miscellaneous fluids from equipment (See also Article 12.3.2.6. for application of reinforced liquid membrane flashing around roof penetrations).
  2. An intermediate separation layer must be installed between
    1. PVC membranes and foam plastic insulation materials (because of chemical incompatibility), and
    2. all fully adhered membranes and rough deck surfaces in a protected membrane roof system.
  3. Membranes should be protected from
    1. pool or garden chemicals and fertilizers,
    2. pet urine,
    3. bird excrement, and
    4. refrigerants.
  4. Where it is desirable for the field membrane to resist the damaging effects of grease, oils or other contaminants, the Design Authority should consider specifying alternative measures, including a liquid membrane that is acceptable to the Guarantor and the manufacturer.
  5. Roof membranes that are exposed to sunlight reflected off adjacent glazing and metal cladding or framework (such as window mullions) should be selected for their ability to accommodate elevated temperatures, or should be protected
    1. with overburden materials, such as pavers or gravel, or
    2. by overhangs that shade reflective wall surfaces and glazing (See Note A-9.1.3.4.).

9.1.3.5. Walkways

  1. When conventionally insulated and uninsulated systems will be accessed at least once per month for maintenance of serviceable equipment, the design must incorporate designated walkways
    1. to protect the primary membrane at roof access points, equipment service locations and along travel routes,
    2. that facilitate drainage and drying (pedestals and other paver supports provide airflow for drying surfaces and assist in leveling; they should not impede the flow of water or air and should uniformly distribute the dead load of pavers and predicted live loads), and
    3. that are properly secured against movement by wind.
  2. The membrane must be suitably protected from mechanical damage by walkway surfaces.
  3. Paver walkway surfaces must be suitably supported in keeping with Article 14.1.3.11. and Article 14.3.2.5., "Wearing Surfaces".
  4. Designated walkways may be specified using a proprietary coating (See also Division A, Article 3.2.1.2.), or may be superimposed on the membrane surface but must be suitably supported in keeping with Article 14.1.3.11. and 14.3.2.5., "Wearing Surfaces".

9.1.4. Conventionally Insulated Systems

(The requirements in Subsection 9.1.3., "All Systems", shall be read together with the following articles)

9.1.4.1. General Requirements

  1. All conventionally insulated roof systems must conform to the requirements in Article 3.1.4.1., and to Part 3 generally.
  2. Only PARS and AARS assemblies are permitted when a conventionally insulated roof system, or a portion of it, is designed to support any type of load; pavers supported by pedestals are an exception (this limitation must be read together with the requirements in Part 14).

9.1.4.2. Warning Zones

  1. Fall protection warning zones (see WorkSafeBC Regulations and related materials) may be designed to utilize
    1. adhered markings or tape (Ref. Division A, Article 3.2.1.2.), or
    2. a proprietary coating.

9.1.5. Uninsulated Systems

(The requirements in Subsection 9.1.3., "All Systems", shall be read together with the following articles)

9.1.5.1. General Requirements

  1. All uninsulated roof systems must satisfy the requirements of the Building Code and Part 3 of this Standard, and shall be (when applicable)
    1. a Tested Assembly,
    2. an Assembly with Proven Past Performance, or
    3. an assembly with custom-engineered securement.
  2. When a roof system installed on a concrete deck or concrete topping is uninsulated, the system design must mitigate the effects of vapour drive from the concrete.
  3. Membranes may not be fully adhered to a wood deck.
  4. Membranes specified for application over a wood deck shall be
    1. fully adhered to a mechanically attached, RoofStar-accepted deck overlay board, or
    2. mechanically fastened.

9.1.5.2. Warning Zones

  1. The requirements and recommendations in Article 9.1.4.2. shall be applied and considered for uninsulated roof systems.

9.1.6. Protected Roof Systems

(The requirements in Subsection 9.1.3., "All Systems", shall be read together with the following articles)

9.1.6.1. General Requirements

  1. Only fully adhered membranes may be used in a Protected Membrane Roof System; mechanically attached membranes are not suitable and shall not be used for this application.
  2. Ballasted systems shall conform to the requirements in Article 3.3.5.1. and Article 9.1.3.3.

Section 9.2. Materials

(See Division C, "Accepted Materials")

9.2.1. Material Properties

9.2.1.1. Membrane Composition, Thickness, and Selection

  1. All PVC membranes must be selected from the list of accepted materials published in Division C of this Manual, and must conform to
    1. acceptance criteria published in this Manual, and
    2. criteria in Table 9.2.1.1.
  2. Liquid membranes must be reinforced and accepted for use both by the single ply manufacturer and by the manufacturer of the liquid membrane.


Table 9.2.1.1..
Properties of Polyvinyl Chloride (PVC) Membranes

Forming Part of Article 9.2.1.1.
All thicknesses shown are in mm.
"
X" means not permissible or not available.
Exposed Roof Systems Protected Roof Systems Grade-level
Water-
proofing
Conventionally Insulated / Uninsulated Systems Membrane
Gutters
Ballasted PMR
Systems
Mechanically
Fastened;
Induction
Welded*
Adhered Adhesive-
applied;
Self-
adhered
Loose-laid Adhered Adhered
Self-
adhered
Hot-
mopped
Adhesive-
applied
Type, Reinforcement, Grade Guarantee Term mm (mils) mm (mils) mm (mils) mm (mils) mm (mils) mm (mils) mm (mils) mm (mils)
PVC
5 1.270 (50) X 1.270 (50) 1.270 (50) 1.524 (60) 1.270 (50) 1.270 (50) 1.524 (60)
10 1.524 (60) X 1.524 (60) 1.524 (60) 1.524 (60) 1.524 (60) 1.524 (60) 1.524 (60)
15 2.032 (80) X 2.032 (80) 2.032 (80) 2.032 (80) X 2.032 (80) X
*Induction welding subject to the securement requirements in the applicable membrane Standard, Part 3.

9.2.1.2. Fasteners and Adhesives

  1. Fasteners and adhesives shall conform to the material requirements in Section 3.2.

9.2.1.3. Protection Materials

  1. When installed membranes require protection, the requirements in Article 14.2.1.2. apply.

9.2.2. Materials Storage and Handling

9.2.2.1. Protection from the Weather

  1. All uninstalled materials must be protected from weather by properly stacking them above ground, or above the roof surface, in or beneath covers that are weather-resistant and secured against displacement by wind (See also Article 4.2.1.1., "Use of Accepted Materials").

9.2.3. Accessories

9.2.3.1. Accessories Supplied by Membrane Manufacturer

  1. All membrane accessory components must be supplied by and acceptable to the manufacturer.

Section 9.3. Application

9.3.1. Guarantee Term Requirements

9.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

9.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. utilize only those membranes listed in Table 9.2.1.1. that qualify for a RoofStar 15-year Guarantee, and
    2. must cover all T-joints with
      1. proprietary covers sealed along all edges with the membrane sealant, or
      2. a field-fabricated cover fit to extend past the intersecting membranes 101.6 mm (4”), using unreinforced PVC covers.

9.3.2. All Systems

9.3.2.1. Preparation of Substrate

  1. All supporting decks must be acceptable to the manufacturer and must be
    1. made suitable for roofing by others (trades other than the Contractor),
    2. dimensionally stable,
    3. structurally sound,
    4. capable of accommodating roof system component movement,
    5. clean,
    6. adequately dry and frost-free (Ref. Subsection 2.1.5., "Roof Decks"),
    7. reasonably smooth and free of abrupt elevation changes, and
    8. absolutely free of
      1. dust,
      2. dirt,
      3. voids,
      4. open cracks,
      5. sharp projections,
      6. contaminants,
      7. objectionable surface treatments,
      8. laitance (concrete must be “native”),
      9. oil, and
      10. grease.
  2. A properly secured, accepted overlay board is required (Ref. Part 5)
    1. for any deck that does not meet the deck fastening criteria set out in Article 2.1.5.3.,
    2. for any deck that cannot be repaired or otherwise made suitable for roofing, and
    3. for mass timber decks (plywood overlay shall conform to the requirements in Article 5.2.1.1.
  3. Substrates must be primed, if required by the manufacturer.
  4. All plane transitions must be prepared or reinforced in the manner specified by the manufacturer.
  5. All concrete decks
    1. must cure at least 28 days before receiving adhered membranes, but this limitation may be reduced if both the building envelope engineer and the manufacturer expressly permit membrane application within the first 28 days after pouring, and their respective signed letters of permission are furnished to the Guarantor forthwith, to be included with the project record ("adhered", as used in this requirement, means fully or intermittently bonding any membrane to the deck with an adhesive, hot asphalt (bitumen), or heat),
    2. must be finished by others to render a surface profile range suitable to the membrane manufacturer, to facilitate a ‘mechanical bond’ between the substrate and the membrane, and
    3. constructed with pre-cast panels must be made continuous and even; all side and end-joints must be filled and reinforced according to the manufacturer’s published requirements.
  6. Plywood decks with cracks or loose knots must be filled or overlaid with plywood (see Article 5.2.1.1.).
  7. Joints between plywood deck panels must be prepared and reinforced according to the manufacturer’s published requirements.
  8. Wood decks must be overlaid with an acceptable deck overlay panel when the specified membrane system will be adhered directly to the deck (Ref. Part 5), but an overlay is not required (unless specified by the Design Authority) for
    1. self-adhered air or vapour controls, or
    2. mechanically fastened or loose-laid membranes.
  9. If surface drying is required prior to roofing, the deck must be dried with blown air.

9.3.2.2. Preparation of Roofing Materials

  1. Membranes must be unrolled, prepared, and conditioned for installation, as required by the manufacturer.

9.3.2.3. General Requirements for Membrane Application

  1. Membranes must be installed according to the manufacturer's published instructions, details, and installation techniques unless exceeded by this Standard.
  2. Membranes should be installed beginning at the lowest point of the roof.
  3. All membrane openings at eaves, walls, vents, etc. must be sealed during application to prevent moisture from entering the roof system.
  4. An intermediate separation layer must be installed between all fully adhered membranes and rough deck surfaces in a protected roof system.
  5. Membranes must be installed according to the manufacturer's published instructions, details and installation techniques unless exceeded by this Standard.
  6. Regardless of how the field membrane is secured, all membranes must be mechanically secured with suitable fasteners, used at intervals conforming to the manufacturer's published requirements (unless exceeded by these requirements)
    1. around the perimeter,
    2. at a slope change greater than 1:6 (2" in 12"), and
    3. around all curbs.
  7. When the roof is designed as a "MARS" assembly, the membrane must be mechanically secured at all drains and protrusions, conforming to the manufacturer's published requirements.
  8. Field test welds must be performed on a daily basis, prior to welding, and thereafter at 2-hour intervals.
  9. When welding commences before the field Observer can verify the field test weld, a cut test may be required.
  10. Before any roof covering, structure or equipment is installed, roof membranes must be
    1. inspected,
    2. scanned for breaches, when an integrity scan is required by this Standard, and
    3. free of deficiencies.
  11. At the end of a day, or when installation must be stopped because of circumstance (such as inclement weather), the new roof system membrane must be temporarily and continuously sealed to ensure the building and any new roof system components are protected from exposure to, and damage by, the weather.

9.3.2.4. Cold and Inclement Weather Application

  1. Installation during cold weather must follow the membrane manufacturer’s guidelines for storage and membrane conditioning.

9.3.2.5. Reserved

9.3.2.6. Membrane Seams

  1. All field membrane seams must be
    1. clean and dry,
    2. fully rolled,
    3. free of fish-mouths,
    4. installed so that any membrane laps are located at least 914.4 mm (36”) from the centre of any roof field drain, except where drain sumps are employed,
    5. sealed with visible, continuous edge sealant (when required by the manufacturer),
    6. covered at T-joints with a proprietary cover sealed along all edges with the membrane sealant, or with a field-fabricated cover fit to extend past the intersecting membranes 76.2 mm (3”), using unreinforced PVC covers,
    7. installed so that, where in-seam fasteners are used along the length of the membrane, adjacent membranes overlap each other at least 137.5 mm (5 1/2"),
    8. sealed
      1. at least 38.1 mm (1-1/2”) wide using a robotic welder, and seams probed to verify a consistent bond,
      2. at least 50.5 mm (2”) wide using a hand-held welder, and seams probed to verify a consistent bond, and
      3. with visible, continuous edge sealant (when required by the membrane manufacturer), and
    9. covered at T-joints with a proprietary cover sealed along all edges with the membrane sealant, or with a field-fabricated cover fit to extend past the intersecting membranes 76.2 mm (3”), using unreinforced PVC covers.

9.3.2.7. Protection of Membranes

  1. The Contractor, and other trades who use primers for self-adhering membranes typically installed on walls or around doors, window, or other wall penetrations, must protect membranes
    1. from splashed or dripped primer used to enhance adhesion of self-adhering membranes, as the primer may damage the membranes and cause leaks, and
    2. from accidental damage, including damage by staged materials, scaffolding, foot and equipment traffic, and anything else that may pose a hazard to the integrity of the membrane.

9.3.2.8. Transitions with Water-shedding Systems

  1. Where slopes less than 1:16 (3/4" in 12") intersect a water-shedding system, the waterproofing system must be designed to extend up the water-shedding system slope as described in Article 10.3.7.2., using methods conforming to the general application requirements in Article 10.3.2.3.

9.3.2.9. Walkways

  1. Any walkway pads or supports capable of absorbing solar radiation must be installed on a non-bonding slip sheet, to protect the membrane from damage by heat.
  2. When pavers are used as the walkway material, they must be
    1. spaced no closer than 3.78 mm (1/8″),
    2. supported by non-abrasive pads or proprietary pedestals providing a minimum of 12.7 mm (1/2″) of vertical separation to permit adequate airflow and leveling (Slip sheets under pedestals may be necessary to prevent membrane abrasion), and
    3. secured against displacement by wind.

9.3.3. Membrane Application Methods

(The requirements in Subsection 9.3.2., "All Systems", shall be read together with the following articles)

9.3.3.1. Self-adhered and Adhesive-applied Membranes

(See Note A-9.3.3.1.)

  1. Fully adhered single-ply membranes must not be installed directly to a supporting wood deck structure but may be applied over a RoofStar-accepted deck overlay suitably fastened to the deck.
  2. All Self-adhered and adhesive-applied membranes must be
    1. applied to a suitable, clean, dry substrate and in keeping with the manufacturer’s published instructions,
    2. installed only when the ambient air temperature meets or exceeds the temperature permitted by the manufacturer, and
    3. fully rolled or broomed, as required by the membrane manufacturer, to ensure even, full contact with the substrate.
  3. Air bubbles should be avoided and must fall within the permissible tolerances provided by the membrane manufacturer or the Tested Assembly.
  4. Self-adhered membranes, in addition to the general requirements above, shall be installed over a primed membrane lap, when required by the manufacturer.
  5. Adhesive-applied membranes, in addition to the general requirements above, must be installed with bonding adhesive evenly applied to both the substrate and the membrane, and allowed to dry to the touch, or as otherwise specified by the manufacturer.
  6. End laps must be sealed in keeping with the manufacturer’s published instructions, and when a cover strip is required, refer to the requirements in Article 9.3.2.3.

9.3.3.2. Mechanically Attached Membranes

(See also Article 9.3.2.6., "Seams")

  1. Whenever possible, mechanically fastened membranes must be oriented perpendicular to steel deck flutes, to distribute fasteners across the deck.
  2. Membranes must be secured with fasteners and stress plates that are
    1. specifically designed for the application of the specified and installed membrane, or
    2. listed in the Tested Assembly report as an acceptable alternative (substitutions, without the written consent of the primary membrane manufacturer, are not permitted and may void the RoofStar Guarantee).
  3. Unless otherwise listed in the assembly components of a Tested Assembly, membranes shall be fastened with self-drilling purpose-made #14 screws having a deep-recessed head.

9.3.3.3. Hot Asphalt-adhered Membranes

  1. Only fleece-backed membranes may be installed with hot asphalt.
  2. All concrete decks to receive adhered membranes shall be primed with the manufacturer’s asphaltic primer.
  3. Hot asphalt
    1. shall conform to the manufacturer's requirements,
    2. must be at least 205°C (400°F) in order to fuse with the membrane,
    3. must be applied at the rates published by the asphalt manufacturer for the particular substrate, and
    4. should be mopped no more than 1 m (3') ahead of the roll.

9.3.3.4. Reserved

9.3.3.5. Reserved

9.3.3.6. Reserved

9.3.4. Conventionally Insulated Systems

(The requirements in Subsection 9.3.2., "All Systems", shall be read together with the following articles)

9.3.4.1. Membrane Application Methods

  1. PVC membranes installed as part of a conventionally insulated roof systems shall be
    1. self-adhered and adhesive-applied ( Article 9.3.3.1.),
    2. mechanically attached ( Article 9.3.3.2.), or
    3. hot asphalt-adhered ( Article 9.3.3.3.).
  2. Membrane securement shall conform to the design requirements for resistance of Specified Wind Loads.

9.3.4.2. Warning Zones

(See also Article 9.1.4.2.)

  1. Self-adhering tapes that are applied on top of the primary membrane, to serve a warning zone, must be
    1. acceptable to the manufacturer, and
    2. installed on a clean, dry membrane according to the published instructions of all concerned manufacturers.

9.3.5. Uninsulated Systems

(The requirements in Subsection 9.3.2., "All Systems", shall be read together with the following articles)

9.3.5.1. Membrane Application Methods

  1. PVC membranes installed as part of an uninsulated roof system shall be
    1. self-adhered and adhesive-applied ( Article 9.3.3.1.),
    2. mechanically attached ( Article 9.3.3.2.), or
    3. hot asphalt-adhered ( Article 9.3.3.3.).
  2. Membrane securement shall conform to the design requirements for resistance of Specified Wind Loads.

9.3.5.2. Membranes Installed on Concrete

  1. Concrete decks shall be prepared as required in Article 9.3.2.1., and the application of the primary membrane shall conform to the general requirements in Article 9.3.2.3. and the published requirements of the manufacturer.

9.3.5.3. Membranes Installed on Wood Decks

  1. Wood decks shall conform to the requirements for wood decks in Subsection 2.1.5., shall be prepared as required in Article 9.3.2.1., and application of the primary membrane shall conform to the general requirements in Article 9.3.2.3.
  2. EPDM membranes shall not be fully adhered directly to a supporting wood deck structure, and instead shall be installed on a RoofStar-accepted deck overlay board.

9.3.5.4. Reserved

9.3.5.5. Warning Zones

  1. When warning zones are specified as part of the primary roof membrane, they must follow the requirements in Article 9.3.4.2.

9.3.5.6. Reserved

9.3.6. Protected Roof Systems

(The requirements in Subsection 9.3.2., "All Systems", shall be read together with the following articles)

9.3.6.1. Membrane Application Methods

  1. PVC membranes installed as part of a protected roof system shall be
    1. self-adhered and adhesive-applied ( Article 9.3.3.1.), or
    2. hot asphalt-adhered ( Article 9.3.3.3.).
  2. Membranes, membrane flashing, and insulation must be installed in keeping with the requirements found elsewhere in this Standard.

9.3.6.2. Membrane Protection

  1. Installed membranes must be protected from damage as soon as possible after integrity testing.

9.3.6.3. Procurement and Installation of Other Materials

  1. All components, including the gravel or paver ballast, must be supplied and installed by the Contractor.
  2. Where a vegetated roof system (VRS) is used as ballast and the VRS
    1. is intended to qualify for a RoofStar Vegetated Roof Guarantee, the VRS shall conform to the design, material, and construction requirements of the “RGC Standard for Vegetated Roofs” .
    2. is not intended to qualify for a RoofStar Vegetated Roof Guarantee, may be installed by others but
    3. the work must be coordinated with the Contractor, and
    4. the VRS must be installed immediately upon completion of the Contractor’s work, to ensure the roof system is held in place (See also Article 14.1.3.12.).

Part 10 - Perimeters and Walls

Section 10.1. Design

10.1.1. General

10.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

10.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary.

10.1.2. Guarantee Term Requirements

10.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

10.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

10.1.3. All Systems

10.1.3.1. General Requirements

  1. The Design Authority is responsible to specify the connections between the roof system and walls or other building components, particularly where the continuity of air, vapour and water-resistive control layers is critical or required by Code (See Part 6, "Air and Vapour Controls").
  2. Projects must follow proper sequencing; materials must positively integrate (“shingle fashion”) with other materials, systems, or assemblies, including those installed by other trades.
  3. Wall surfaces must be suitable to receive roof materials, or they must be covered with an accepted overlay panel material listed in Division C.
  4. Where the roof deck and an adjoining wall are constructed of dissimilar materials (i.e., steel deck joined to concrete wall), differing expansion and contraction rates for the two materials may adversely affect the roof system and, in particular, the field and flashing membranes, and therefore it is incumbent upon the Design Authority to consult the manufacturer's literature and specify the correct materials for each particular roof-wall intersection (See Note A-10.1.3.1.(4)).
  5. Sheet membrane turned up any vertical surface (i.e., a wall or parapet), or sheet membrane used for flashing, must
    1. be mechanically secured at the field edge (the base of the plane transition) using the manufacturer's proprietary securement system, and
    2. be fully bonded to an acceptable substrate.
  6. When EIFS cladding is cut to permit roofing work, the exposed insulation must be restored with back-wrapped mesh, a base coat and finish coat, or with another method that is equal or superior (See Note A-10.1.3.2.(5)).

10.1.3.2. Membrane Flashing

  1. All changes in plane in the roof system, and all intersections between the roof field and roof edges, walls, or parapets, must be
    1. covered with the field membrane turned up the vertical surface, or
    2. flashed with sheet membrane, or with a reinforced liquid membrane flashing system that is acceptable to the Guarantor, acceptable to the manufacturer, and permitted by this Standard.
  2. Sheet membrane turned up any vertical surface (i.e., a wall or parapet), or sheet membrane used for flashing, must be self-adhered, adhered with adhesives, or adhered with hot asphalt (bitumen), and shall conform to the requirements in Article 10.3.2.3.
  3. Linear metal flashing, or a RoofStar-accepted, fleece-reinforced 2-component polymethyl methacrylate (PMMA) liquid membrane flashing, is required at all roof edges, upper membrane terminations, curb tops, and at the tops of parapets, to protect sheet membrane flashing from damage.
  4. All linear metal flashing used for the termination of sheet membrane flashing shall be installed in keeping with Article 13.1.3.3., "Securement".
  5. Sheet membrane flashing must be protected from damage caused by foot traffic or shifting coverings, using base metal flashing or other methods acceptable to the Guarantor.
  6. Where a roof allows water to freely drain off the edge, and the roof adjoins a wall, a cricket or diverter should be installed at the roof edge to prevent water intrusion behind wall finishes.

10.1.4. Perimeter Details, High Walls, and Openings

(The requirements in Subsection 10.1.3., "All Systems", shall be read together with the following Articles)

10.1.4.1. Parapets

  1. Parapets may be waterproofed before a coping, its membrane, and metal coping (cap) flashing are installed, but the coping will be excluded from coverage unless the parapet membranes are carried onto and over the coping in accordance with the application requirements described in Article 10.3.4.1.
  2. On roofs where overburden or ballast extends to the roof edge, parapets must be designed to retain the material against wind scouring, but in any event, they shall be no less than 203.2 mm (8”) in height when measured from the top of the finished roof system surface.
  3. Parapets are optional, but when a parapet is specified it must be no less than 127 mm (5") in height, measured from the finished roof system surface to the inside top edge of the parapet (this height requirement facilitates proper metal cap flashing securement) (Ref. Article 10.3.4.1.; also see Article 13.3.2.3., "Cap Flashing, Counter-flashing, and Reglet Flashing").
  4. Parapets with cavities must be designed with consideration for ventilation.
  5. All parapet copings that form part of the Contractor’s scope of work must provide solid support for metal coping (cap) flashings and shall be suitable to receive mechanical fasteners (Ref. Article 13.1.3.6.; also see Article 13.3.2.1.).
  6. When the width of any parapet exceeds 101.6 mm (4"), the coping (installed by other trades) must
    1. slope toward the roof-side of the parapet wall, and shall
    2. be sloped to meet the minimum requirements for metal coping (cap) flashing in Table 13.1.-A, Article 13.1.3.4.
  7. Membranes specified for parapets with a pre-cast or stone coping must be at least 2.5 mm thick.

10.1.4.2. Low Profile Edges

  1. A metal-edge termination detail may be used on a conventionally insulated or uninsulated roof system but must be fully blocked to support the metal and membrane edges.
  2. Canted edges are not required or recommended and may be retained on existing roofs, but
    1. this shall be at the discretion of the Design Authority, and
    2. the canted substrates must be wood.
  3. When, for aesthetic reasons, face-fastened metal flashing covering a canted edge is not desirable, cants may be replaced with
    1. a metal edge roof termination, or
    2. a parapet, designed and constructed in keeping with the minimum requirements in Article 10.1.4.1. and Article 10.3.4.1.

10.1.4.3. Tall Parapets

  1. When a parapet higher than 609.6 mm (24") (a tall parapet) is specified as part of the Contractor’s scope of work,
    1. membranes specified for the vertical surface of the wall, above the primary roof membrane flashing, must conform to the requirements in Article 10.2.1.1. , and
    2. additional mechanical securement shall conform to the requirements in this Part, or to the requirements of the manufacturer, whichever is greater.
  2. All roof intersections with walls shall conform to the requirements in Subsection 10.1.3., "All Systems", and shall maintain continuity with the wall control layers for air, vapour, and water.
  3. Tall parapets with cavities must be designed with consideration for ventilation.

10.1.4.4. Reserved

10.1.4.5. Doors, Windows, and Wall Openings

(Ref. Construction Detail "Low Door Opening")

  1. Rough openings formed or framed in walls to accommodate doors, windows, curtain-wall assemblies, or other penetrations (i.e., ventilation grilles), should be oversized to allow for the build-up of roof system flashing membrane.
  2. Low-clearance openings (rough openings less than 203.2 mm (8") in height, measured from the finished roof system surface)
    1. should be avoided, particularly when designing a roof to support any type of overburden (i.e., a vegetated roof system) , and
    2. are not recommended because of their propensity to leak (a leak through a low opening is not covered by a RoofStar Guarantee) .
  3. When a low-clearance opening is unavoidable or specified (i.e., to comply with Code for level access and egress) ,
    1. the roof must be sloped away from the opening,
    2. the rough opening shall not be less than 101.6 mm (4") above the drainage plane and must be waterproofed in keeping with the requirements in Article 10.3.4.5.,
    3. the drainage plane must be free of obstructions and materials capable of displacing water,
    4. the low-clearance opening should be protected by an overhang wherever practical, to minimize water intrusion that occurs from wind-driven rain or from snow accumulation, and
    5. the opening must be protected by an overflow drain,
      1. situated on the same roof area as the low-clearance opening,
      2. located at least 25.4 mm (1") below the elevation of the rough opening, and
      3. conforming to the spacing and capacities required by the "National Plumbing Code of Canada", Division B, Article 2.4.10.4. (See also Article 11.1.3.1., "Principles of Design").
  4. When the building interior transitions to an accessible roof surface through a flush door opening,
    1. the design shall conform to the requirements in this Part, and to Article 14.1.3.11., and
    2. the membrane installed over the rough opening sill must be protected from abrasion damage as described in Sentence 10.3.4.5.(6) below .

10.1.5. Reserved

10.1.6.2. Control Joints (Roof Dividers)

(See Note A-10.1.6.2.; also see Article 10.3.6.2.)

  1. The Design Authority is responsible
    1. to determine the need for control joints (roof dividers), and
    2. to specify their location and design.
  2. The Design Authority must consider specifying control joints
    1. when a single roof area exceed 61 m (approx. 200’) in length and the membrane is limited in its flexibility (consult the manufacturer for their recommendations),
    2. for buildings in climate zones with significant seasonal temperature swings,
    3. where an addition joins an existing building,
    4. where the deck type changes (i.e., steel transitions to wood),
    5. where insulation in the roof system changes thickness,
    6. where the roof deck changes in elevation, and
    7. when interior heating conditions change.
  3. Specified and detailed control joints should be located at the high points of the roof, so that water drains away from both sides of the divider and is not impeded by it.
  4. Control joints must be
    1. constructed as a raised divider,
    2. sloped on the top face,
    3. fabricated with a minimum height of 203.2 mm (8"), measured from the finished roof system surface, but this may be reduced to a height of 101.6 mm (4”) if the control joint is fully enveloped in no fewer than two plies of sheet membrane flashing, or to 127 mm (5”) if capped with linear metal flashing (Ref. Article 12.1.3.4. concerning sleepers), and
    4. waterproofed in keeping the requirements in Article 10.3.2.3., together with the manufacturer’s published specifications for the detail.
  5. Unless otherwise approved by the Guarantor, control joints must be specified to divide a new roof system (addition) from existing roof systems (Ref. Article 1.1.4.5.).

10.1.7. Intersections with Other Roof Systems

(The requirements in Subsection 10.1.3., "All Systems", shall be read together with the following Articles)

10.1.7.1. Intersections with Water-shedding Roofs

  1. Intersections with water-shedding roofs must be designed according to the requirements in Article 10.3.7.2.

10.1.7.2. Intersections with Membrane Gutters

  1. Refer to Article 11.1.4.3.

10.1.8. Alternative Approaches for Membrane Flashing

(The requirements in Subsection 10.1.3., "All Systems", shall be read together with the following Articles)

10.1.8.1. Specifying Hazard-reduction Strategies

  1. The Design Authority should consider alternatives to heat-applied materials when the application process involves Hot Work (Ref. Article 1.1.3.5.) and the substrate to which they will be applied is combustible, or when nearby structures, openings, or materials, present a fire hazard; in the alternative, choose a suitable separation or overlay material as protection from open flame.
  2. Self-adhering or adhesive-applied membranes as alternatives to heat-applied membranes are acceptable to the Guarantor and must also be acceptable to the manufacturer.

Section 10.2. Materials

(See Division C, "Accepted Materials")

10.2.1. Material Properties

10.2.1.1. Flashing Membranes

  1. Sheet membranes used to flash the intersection of the roof field and perimeter walls must conform to the membrane requirements found in Article 9.2.1.1.
  2. When waterproofing the vertical plane of a tall parapet above the primary membrane roof system is specified as part of the Contractor's scope of work (Ref. Article 10.1.4.3. and Article 10.3.4.3.), the membrane used on the vertical plane of the parapet shall
    1. be compatible with the primary membrane,
    2. be self-adhering,
    3. be declared suitable for the application by the manufacturer (see Note A-10.2.1.1.(2)(3)),
    4. possess properties consistent with the design and characteristics of the wall assembly,
    5. possess a high softening point and a minimum flow temperature of 87.7°C (190°F) (ASTM D5147, "Standard Test Methods for Sampling and Testing Modified Bituminous Sheet Material") and
    6. have a thickness no less than 1 mm (.040”).
  3. Some membranes may be susceptible to damage from bird droppings, pet urine, and chemical contamination (oils, solvents, or any discharge from a mechanical unit), and therefore they should be protected using measures designed in consultation with the manufacturer.
  4. Fleece-reinforced liquid membrane flashing systems must be accepted by the Guarantor and proprietary to, or accepted by, the manufacturer.

10.2.1.2. Linear Metal Flashing

  1. Linear metal flashing incorporated into roof perimeters and walls must conform to the materials and fabrication requirements in Part 13, "Linear Metal Flashing".

10.2.1.3. Reserved

10.2.1.4. Sealants

  1. Sealants applied to linear metal flashing, where sheet membrane flashing is terminated, shall conform to the requirements in Article 13.2.1.4.

10.2.2. Securement Materials

10.2.2.1. Fasteners

  1. Where fasteners are used in the roof system
    1. to secure waterproofing materials, they shall conform to the requirements in Article 3.2.2.1.
    2. to secure linear metal flashings, they shall conform to the requirements in Article 13.2.1.4.

Section 10.3. Application

10.3.1. Guarantee Term Requirements

10.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

10.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

10.3.2. All Systems

10.3.2.1. Substrate Preparation

  1. All wall surfaces to which roofing materials must be installed (including Concrete Masonry Unit (CMU)) shall be
    1. prepared in like manner to the roof deck (Ref. Article 9.3.2.1.) and declared suitable by the manufacturer, or
    2. covered with a RoofStar-accepted overlay panel conforming to the material requirements in Article 5.2.1.3. and installed to conform to Article 5.3.2.5.

10.3.2.2. Material Preparation

  1. Membrane flashing shall be prepared following the manufacturer's published requirements.

10.3.2.3. General Application Requirements for Perimeters and Walls

  1. All changes in plane in the roof assembly must be waterproofed with a material acceptable to the Guarantor.
  2. Projects must follow proper sequencing so that materials, systems, or assemblies, installed by the Contractor correctly interface with materials, systems, or assemblies installed by other trades, to establish or preserve continuity and ensure positive waterproofing connections (overlapping, “shingle fashion”).
  3. When coordination with other trades requires some adaptation to the requirements in this Standard, any variance to proper detail sequencing must be approved in writing by the Design Authority.
  4. Sheet membrane turned up any vertical surface (i.e., a wall or parapet), or sheet membrane used for flashing, must be installed to conform to the manufacturer's published instructions, and must
    1. be mechanically secured at the field edge (the base of the plane transition) using the manufacturer's proprietary securement system,
    2. be fully bonded to an acceptable substrate,
    3. be installed from the low point of the roof (for positive laps toward the drain),
    4. provide at least 203.2 mm (8") of coverage on a vertical surface, immediately above the finished roof system surface, (at least 304.8 mm (12") when air, vapour, or water control systems in wall assemblies are present or specified, to permit sufficient positive continuity),
    5. shall extend onto the field of the roof, as required by the manufacturer (when separate membrane flashing plies are used),
    6. be installed without fish-mouths or wrinkles,
    7. be hand-rolled with a manufacturer’s accepted roller and fully bonded to an acceptable, prepared substrate, and
    8. be reinforced at all inside and outside corners with membrane corner details or seam transition covers
      1. wherever the membrane flashing changes planes (vertical to horizontal, for example), and
      2. installed in accordance with the manufacturer’s published instructions,
    9. wrap onto the outside face of a parapet or roof edge, and extend downward to overlap any cold joint by at least 50.8 mm (2”),
    10. overlap any wall membranes or finishes by at least 50.8 mm (2”), and
    11. underlap any wall membranes or finishes by at least 76.2 mm (3").
  5. When sheet membrane is carried up a vertical surface more than 609.6 mm (24"), and the membrane will be left exposed to the weather, the membrane shall be mechanically secured to the roof-side face of the wall at a reasonable interval between the roof field and the upper termination of the membrane.
  6. When mechanical securement of membrane flashing is required, it shall be fastened only on the vertical plane to minimize the possibility of leaks.
  7. Low-clearance openings in walls (rough openings less than 203.2 mm (8") in height, measured from the finished roof system surface) are permissible provided they conform to the requirements in Article 10.3.4.5.).
  8. The upper termination of sheet membrane installed on the vertical plane must be protected from damage, and from water intrusion,
    1. with linear metal flashing installed in keeping with Article 13.3.2.1., "General Requirements for Linear Metal Flashing", or
    2. with a wall finish installed by others.
  9. When sheet membrane flashing is terminated on a vertical surface, it must be secured at its upper termination using
    1. Option 1 ( Figure 10.3.2.3.-A ), in which the upper edges of fully adhered sheet membrane flashing plies shall be protected and secured with overlapping adhered or self-adhered wall membranes and exterior sheathing,
    2. Option 2 ( Figure 10.3.2.3.-B ), where the upper edges of fully adhered sheet membrane flashing plies must be sealed, and mechanically secured to the wall substrate, with a RoofStar-accepted reinforced liquid membrane flashing (Ref. Article 10.3.3.4., "Liquid Membrane Flashing"),
    3. Option 3 ( Figure 10.3.2.3.-C ), where
      1. the upper edges of fully adhered sheet membrane flashing plies shall be mechanically secured to the wall with a termination bar,
      2. an acceptable sealant shall be applied along the upper edge of the termination bar,
      3. the sealed termination bar shall be covered with a secondary linear metal counter-flashing installed in a cut reglet (groove), and
      4. an acceptable sealant shall be applied along the upper edge of the cut reglet flashing,
    4. Option 4 ( Figure 10.3.2.3.-D ), in which
      1. the upper edges of fully adhered sheet membrane flashing plies must be mechanically secure the membrane to the wall with a termination bar or metal flashing,
      2. an acceptable sealant shall be applied along the upper edge of the termination bar or metal flashing,
      3. the sealed termination bar or flashing shall be covered with a secondary "surface reglet" flashing secured against the surface of the wall, and
      4. an acceptable sealant shall be applied along the upper receiving edge of the "surface reglet", or
    5. Option 5 ( Figure 10.3.2.3.-E ), in which
      1. the upper edges of fully adhered sheet membrane flashing plies shall be mechanically secured to the wall with a linear metal counter-flashing ("surface reglet"),
      2. an acceptable sealant shall be applied along the upper edge of the counter-flashing,
      3. the sealed counter-flashing shall be covered with a secondary "surface reglet" flashing secured against the surface of the wall, and
      4. an acceptable sealant shall be applied along the upper receiving edge of the "surface reglet".
  10. When sheet membrane turned up the vertical plane is mechanically secured with a termination bar or a metal flashing, fasteners must be spaced no more than 304.8 mm (12”) O.C.
  11. When a second metal flashing is installed to protect a termination bar or flashing used to secure the sheet membrane flashing, it may be fastened no more than 609.6 mm (24”) O.C., provided the linear metal flashing maintains continuous contact with the substrate.
  12. When closer fastener spacing is required by the manufacturer, the wall must be constructed or modified to facilitate solid fastener securement.
  13. Where a roof allows water to freely drain off the edge, and the roof adjoins a wall, a cricket or diverter should be installed at the roof edge to prevent water intrusion behind wall finishes.
  14. EIFS walls that must be cut to permit membrane replacement work must be restored with back-wrapped mesh, a base coat, and a finish coat, or with another method that is equal or superior.


Figure 10.3.2.3.-A
Membrane Termination on Wall
Option 1

Forming Part of
Clause 10.3.2.3.(9)(1)(1)
(Click to expand)
Figure 10.3.2.3.-B
Membrane Termination on Wall
Option 2

Forming Part of
Clause 10.3.2.3.(9)(2)
(Click to expand)
Figure 10.3.2.3.-C
Membrane Termination on Wall
Option 3

Forming Part of
Clause 10.3.2.3.(9)(3)
(Click to expand)
Figure 10.3.2.3.-D
Membrane Termination on Wall
Option 4

Forming Part of
Clause 10.3.2.3.(9)(4)
(Click to expand)
Figure 10.3.2.3.-E
Membrane Termination on Wall
Option 5

Forming Part of
Clause 10.3.2.3.(9)(5)
(Click to expand)
PVC Figure 10.3.2.-A.png PVC Figure 10.3.2.-B.png PVC Figure 10.3.2.-C.png PVC Figure 10.3.2.-D.png PVC Figure 10.3.2.-E.png

10.3.2.4. Protection of Membranes

  1. All installed membranes must be protected from splashed or dripped primer (applicable to all trades).
  2. Membrane flashing must be protected from damage caused by foot traffic, or shifting coverings, using a linear metal flashing (i.e., base flashing) or other methods acceptable to the Guarantor.
  3. Protection materials shall be installed as required in Article 9.3.2.7.
  4. When an integrity scan is not required because the conditions in Article 1.1.3.3. have been satisfied, the Contractor shall nevertheless protect installed field membranes and membrane flashing, immediately after installation, with RoofStar-accepted membrane protection materials.

10.3.3. Additional Requirements for Membrane Flashing

(The requirements in Subsection 10.3.2., "All Systems", shall be read together with the following Articles)

10.3.3.1. Reserved

10.3.3.2. Self-adhered Membranes

  1. Self-adhered membranes must be installed on a clean, uncontaminated surface.
  2. All self-adhered membrane that terminates on the vertical plane must be mechanically secured.

10.3.3.3. Adhesive-applied and Hot Asphalt-applied Membranes

  1. Adhesive-applied and Hot Asphalt-applied Membranes must be installed on a clean, uncontaminated surface.
  2. Hot asphalt-applied sheet membrane installed on a vertical plane must conform to the manufacturer's installation specifications, using the manufacturer's accepted asphalt.
  3. Asphalt temperature must conform to the membrane manufacturer's minimum application temperature; a minimum application temperature of 205°C (400°F) is required.
  4. When hot asphalt is used to adhere membrane flashing (stripping), metal base flashing is required on all vertical surfaces, walls, curbs, etc. (also see Article 13.3.2.4., "Cap, Counter, and Base Flashing")

10.3.3.4. Liquid Membrane Flashing

  1. Liquid membrane flashing systems described in this Article may be used only when approved by the manufacturer.
  2. Two-component fleece-reinforced catalyzed polymethyl methacrylate (PMMA) and polyurethane methyl methacrylate (PUMA) liquid membrane flashing systems must be accepted by the Guarantor and listed in Division C, and
    1. may be used
      1. on the drainage plane,
      2. where sheet membrane flashing may not be practical or even possible,
      3. to terminate the top edge of sheet membrane flashing,
      4. for sheet membrane reinforcement (i.e., at corners),
      5. where abrasion resistance is desirable,
      6. where resistance to sheet membrane contamination is necessary, or
      7. where the Design Authority specifies its application.
    2. must be compatible with the primary sheet membrane flashing.
  3. For all applications,
    1. the substrate must be clean, dry, free of contaminants, and primed, as directed by the flashing system manufacturer,
    2. a base layer of catalyzed liquid membrane resin must be applied within the area masked for coverage,
    3. the base coating must be reinforced with the manufacturer’s fleece, cut to size so that the fleece is set in from the masked area no more than 3.78 mm (1/8”),
    4. the fleece must be fully saturated with liquid, following the published instructions from the manufacturer, and
    5. the embedded fleece must be coated with a second application of catalyzed liquid membrane resin, covering the masked area.
  4. On vertical sheet membrane terminations, the liquid membrane flashing system shall provide no less than 50.8 mm (2") coverage, both above and below the sheet membrane termination.
  5. Application rates and guidelines issued by the manufacturer of the liquid flashing product must be followed, unless superseded by these requirements (Ref. Figure 12.3.2.-A).
  6. Where a fleece-reinforced 2-component catalyzed polymethyl methacrylate (PMMA) or polyurethane methyl methacrylate (PUMA) liquid membrane flashing system serves as a substitute for sheet membrane flashing, the reinforced liquid membrane flashing system must extend at least 203.2 mm (8”) up the vertical plane, and no less than 203.2 mm (8") onto the horizontal field plane.
  7. When a granule surface or textured finish is specified, the granules or texturing material must be broadcast into a third coat.

10.3.4. Perimeter Details, High Walls, and Openings

(The requirements in Subsection 10.3.2., "All Systems", shall be read together with the following Articles)

10.3.4.1. Parapets

  1. All standard parapets (609.6 mm (24”) or less in height)
    1. must be completely waterproofed with membrane or membrane flashing conforming to the minimum requirements in Article 9.2.1.1. and installed to conform to Article 10.3.2.3., and
    2. shall be waterproofed with sheet membrane
      1. applied to the roof-side face of the parapet, extending from the roof field to a point at least 203.2 mm (8”) above the finished roof system surface, and
      2. applied to the sloped top and exterior faces.
  2. Membrane applied to parapet walls must be fully bonded to the entire surface of the parapet (Ref. Article 13.3.2.3.(4)).
  3. Coping that is part of the roof system must be continuously waterproofed as part of the roof system, even if the coping is flashed separately from the parapet wall.
  4. All membrane bonded to a parapet coping shall continue over the top and extend down the outside face of the coping, overlapping any joint at least 50.8 mm (2”).
  5. A tall parapet (taller than 609.6 mm (24”)) shall be waterproofed in keeping with the requirements in Article Article 10.3.4.3.).
  6. Where a parapet intersects with a higher wall, water must be directed to the outer surface of the wall by flashing the union with
    1. PVC sheet membrane flashing,
    2. PVC reinforcement patches, and
    3. a metal saddle assembly.
  7. When a parapet is capped with a pre-cast concrete or stone coping,
    1. the membrane over the top of the parapet must be drilled by others to receive dowels,
    2. the dowels must be installed by others, and
    3. the dowels must be sealed by the Contractor, following the requirements in Article 14.3.2.7., Sentences 6 and 7, for sealing dowels installed in pre-curbs.

10.3.4.2. Low Profile Edges

  1. Metal edge flashings must be
    1. supported over a solid substrate,
    2. installed after application of the field membrane, which must wrap onto the outside face of the roof edge and extend downward to overlap any cold joint by at least 50.8 mm (2”),
    3. seated in water cut-off sealant applied to the top of the installed field membrane,
    4. fastened to the roof structure with mechanical fasteners spaced 203.2 mm (8”) O.C. in offsetting rows, (Ref. Article 13.3.2.1.),
    5. joined to each other with lap joints measuring at least 101.6 mm (4”), each joint sealed with butyl or gunnable sealant,
    6. cleaned and prepared to receive membrane,
    7. primed with the manufacturer's accepted primer, unless specified otherwise by the manufacturer, and
    8. covered with membrane flashing
      1. matching the composition of the membrane used in the field,
      2. adhered to the flange with the manufacturer's proprietary adhesive,
      3. extending at least 101.6 mm (4") onto the metal flashing, and at least 50.8 mm (2”) past the fasteners,
      4. extending at least 152.4 mm (6”) onto the field membrane,
      5. heat-welded around the perimeter to conform to standard seam requirements (Ref. Article 9.3.2.6.), and
      6. sealed around all edges with the manufacturer's cut-edge sealant.
  2. Existing and new canted edges must be
    1. made of wood, and
    2. flashed with sheet membrane in keeping with the requirements in Article 10.3.2.3.

10.3.4.3. Tall Parapets

  1. Sheet membranes installed on a tall parapet, above the termination of primary roof membrane flashing,
    1. shall conform to the material requirements in Article 10.2.1.1.,
    2. must be applied with the methodology prescribed by the manufacturer,
    3. shall positively overlap the primary sheet membrane flashing by at least 50.8 mm (2”),
    4. shall underlap the roof sheet membrane flashing installed to cover the top of a parapet by at least 50.8 mm (2"),
    5. may be used to waterproof the coping of a tall parapet , and
    6. shall be protected from UV radiation with a metal flashing, cladding or another wall covering.
  2. The application of membrane over the coping of a tall parapet shall conform to the manufacturer’s prescribed methodologies but may be installed parallel to the long axis of the parapet as permitted in Article 10.3.4.1.(2) for a standard parapet, provided the conditions therein are satisfied.


10.3.4.4. Reserved

10.3.4.5. Doors, Windows, and Wall Openings

(Ref. Construction Detail "Low Door Opening")

  1. Rough openings formed or framed in walls to accommodate doors, windows, curtain-wall assemblies, or other penetrations (i.e., ventilation grilles), must be waterproofed before the door, window, curtain-wall, or another assembly is installed.
  2. All rough openings must be suitable for the application of sheet membrane flashing or reinforced liquid membrane flashing systems, and any work to render surfaces suitable shall be performed by others.
  3. Low-clearance openings (rough openings less than 203.2 mm (8") in height, measured from the finished roof system surface) must be flashed using methods described in this Article; curtain-wall openings may be flashed using a modified metal water-stop flashing method by eliminating the water-stop flashing, provided the remaining required work is executed by the Contractor.
  4. Membranes used for this application must conform to the material requirements in Article 10.2.1.1., "Flashing Membranes".
  5. In all methods described in this Article, low-clearance openings must be pre-flashed with membrane
    1. lapped over the field membrane in keeping with requirements found elsewhere in this Part,
    2. carried over the top face of the rough opening, and
    3. carried vertically above the sill, at least 101.6 mm (4").
  6. Regardless of the method described below, the membrane installed over the rough opening sill must be protected from abrasion damage with
    1. a full-coverage pre-manufactured threshold step (by others) ,
    2. a full-coverage metal flashing, supplied and installed by the Contractor, or
    3. fleece-reinforced PMMA, coated with an abrasion-resistant coating proprietary to the PMMA manufacturer .
  7. When the metal water-stop flashing method is specified,
    1. all corners must be reinforced with compatible membrane patches or covers, and.
    2. the metal water-stop flashing must be
      1. fabricated to fit the full width of the opening,
      2. fashioned with a water dam upstand measuring at least 25.4 mm (1”) in height,
      3. installed over the sill membrane,
      4. embedded in a membrane-compatible mastic or sealant,
      5. mechanically attached to the sill, and
      6. sealed to the rough opening with an additional ply of membrane flashing.
  8. When the metal sill-pan flashing method is specified, a single-piece metal pan sill flashing must be
    1. fabricated to fit snugly inside the rough opening,
    2. folded, welded, or soldered in the corners,
    3. fashioned with a water dam upstand measuring at least 25.4 mm (1”) in height,
    4. fabricated with 101.6 mm (4”) high flanges that cover the insides of the rough opening and wrap around the outside face of the wall at least 101.6 mm (4”),
    5. installed over the pre-flashing membrane and embedded in a membrane-compatible mastic or sealant,
    6. mechanically attached to both the outside and inside faces of the rough door opening, and
    7. sealed to the rough opening with an additional ply or coating of membrane flashing.
  9. When clearances preclude the use of either the metal water-stop flashing method or the metal sill-pan flashing method, the rough opening may be flashed using the reinforced liquid membrane flashing.
  10. When a reinforced liquid membrane flashing method is specified,
    1. the rough opening must be flashed using the metal water-stop method,
    2. the metal water-stop flashing must be sealed to the pre-flashing membrane using an accepted liquid membrane flashing system,
    3. the inside faces of the rough opening must be flashed with reinforced liquid membrane flashing, ensuring an overlap with the membrane on the sill at least 50.8 mm (2”),
    4. liquid membrane flashing must extend up the inside faces of the rough opening at least 101.6 mm (4”), and
    5. the liquid membrane flashing system must be applied following the requirements in Article 10.3.3.4.
  11. Overflow drains must
    1. be installed on the roof area adjacent any rough low-clearance opening,
    2. be located at least 25.4 mm (1") below a rough low-clearance opening, and
    3. conform to the spacing and capacities required by the "National Plumbing Code of Canada", Division B, Article 2.4.10.4. (See also Article 11.1.3.1., "Principles of Design").

10.3.5. Reserved

10.3.6. Expansion and Control Joints

(The requirements in Subsection 10.3.2., "All Systems", shall be read together with the following Articles)

10.3.6.1. Expansion Joints

  1. Expansion joints, which are framed and sheathed by others, must be
    1. sloped toward the roof surface on the top face of each side,
    2. waterproofed as shown in Construction Detail "Expansion Joint (Field)", with methods and materials conforming to the requirements in Article 9.3.2.3., and with the manufacturer’s published specifications for the detail, and
    3. covered with 2-part linear metal flashings (counter-flashing and cap flashing) that permit multi-directional movement in the joint.
  2. When proprietary elastomeric expansion joint systems are specified, the bond between the sheet membrane flashing and the expansion joint system must be acceptable to both the manufacturer and the supplier of the expansion joint system (Ref. Article 10.1.6.1. for design requirements).
  3. Field splicing of proprietary elastomeric expansion joints is permissible only when made with a machine acceptable to the expansion joint manufacturer.

10.3.6.2. Control Joints (Roof Dividers)

  1. Control joints must be waterproofed in keeping the requirements in Article 10.3.2.3., together with the manufacturer’s published specifications for the detail.

10.3.7. Intersections with Other Roof Systems

(The requirements in Subsection 10.3.2., "All Systems", shall be read together with the following Articles)

10.3.7.1. Compatibility of Materials

  1. Where two roof systems intersect, materials must be compatible with each other, or must be separated from contact by an intermediate separation layer.

10.3.7.2. Intersections with Water-Shedding Roofs

(See Note A-10.3.7.2. )

  1. When a waterproofing roof system transitions down a slope onto a lower water-shedding roof system, the waterproofing membrane must lap over the water-shedding roof system by no less than 50.8 mm (2").
  2. When a waterproofing roof system transitions up a slope and underlaps a water-shedding roof system,
    1. sheet membrane flashing must extend up the water-shedding roof system slope at least
      1. 152.4 mm (6”), plus at least 76.2 mm (3”) for the overlap by the water-shedding roof system, when measured vertically from the maximum water level, and
      2. 304.8 mm (12”) plus at least 76.2 mm (3”) for the overlap by the water-shedding roof system, when measured vertically from the maximum water level, in regions with typical heavy snow,
    2. the termination of the waterproofing roof system sheet membrane flashing on the slope must be mechanically secured, separately from the water-shedding roof system, and
    3. the overlapping of adjoining roof system materials must conform to the requirements for the specific water-shedding roof system.

10.3.7.3. Intersections with Membrane Gutters

  1. Refer to the requirements in Article 11.3.3.8.

10.3.8. Reserved


Part 11 - Drainage

Section 11.1. Design

11.1.1. General

11.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

11.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Drain leader means "a pipe that is installed to carry storm water from a roof to a storm building drain or sewer or other place of disposal” ("British Columbia Plumbing Code", Division A, Article 1.4.1.2., "Defined Terms").
    2. Flanged insert drain means a primary roof drain
      1. with a flat, broad flange that encircles, and is manufactured from the same material as, the drain opening or bowl,
      2. that is spun or hot-welded (not cast),
      3. that typically is secured to the roof assembly with screw-type mechanical fasteners, and
      4. that is manufactured with a short length of drain pipe ("drain stem"), which is inserted into a drain leader and sealed against back-flow using a compression seal.
    3. Overflow drain ("overflow") means a secondary roof drain
      1. that serves as a safeguard when roof drains fail, and
      2. which may be located in the roof field (for example, as a secondary drain) or at the perimeter of the roof.
    4. Primary roof drain means the primary means of draining water from the roof.
    5. Roof drain means “A fitting or device that is installed in the roof to permit storm water to discharge into a leader.” ("British Columbia Plumbing Code", Division A, Article 1.4.1.2., "Defined Terms").
    6. Scupper drain ("Scupper") means an open or closed roof drain that conveys water laterally from one roof area to another, or from the roof directly to the exterior of the building.
    7. Secondary roof drain means a drain connected to a separate drainage system, typically situated at a higher elevation than a primary roof drain. An overflow drain is a type of secondary roof drain.

11.1.2. Guarantee Term Requirements

11.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

11.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. incorporate overflow drains, designed for all roof areas, that are properly sized and spaced, in keeping with the building and plumbing codes having jurisdiction,
    2. incorporate only drains and overflows designed and equipped with clamping rings, and
    3. specify securement of the roof membrane with drain clamping rings or, when permitted by the manufacturer, a reinforced 2-component liquid membrane flashing, which must conform to the material and application requirements in this Standard.

11.1.2.3. RoofStar Vegetated Roof Guarantee

  1. To qualify for a RoofStar Vegetated Roof Guarantee, the supporting roof assembly shall
    1. comply with the requirements in this Part for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee,
    2. be acceptable to the manufacturer as support for a vegetated roof system, and
    3. comply with the related requirements in the “RGC Standard for Vegetated Roofs”.

11.1.3. All Systems

11.1.3.1. Principles of Design

  1. The Design Authority is responsible for the design of roof drainage and continuity of control layers, where these intersect with any part of the designed roof drainage system (Ref. Article 3.1.5.1.; also see Article 6.1.3.2.).
  2. The size (flow rate) of roof drains and overflows must be determined using the "British Columbia Building Code" and "British Columbia Plumbing Code", with attention given to both average and large rainfall events (for rainfall capacities, refer to the "British Columbia Building Code", Div. B, Appendix C, "Table C-2", which lists rainfall loads using specific reference locations throughout the province.
  3. Membrane gutters must be designed for their anticipated capacity, with consideration given to
    1. rainfall and snow load calculations for the building location,
    2. drain type, size, flow rate, and
    3. size and placement of the overflow drain.
  4. The Design Authority should coordinate the various disciplines (including, without limitation, mechanical (plumbing) and structural engineers) to calculate proper flow rates, head pressure, and structural supports, in anticipation of significant, short-duration rain events; consideration should be given to various design elements (listed without limitation)
    1. roof slope (more slope theoretically increases drainage and lessens live loading from rainfall) (Ref. Article 2.1.3.1., "General Requirements for Roof Slope"),
    2. rainfall rates for primary and overflow drainage,
    3. primary and overflow drain capacities,
    4. hydraulic head (pressure), and
    5. the location of the drainage plane (the drainage plane is not necessarily the same as the finished roof system surface, and the location of the drainage plane may affect the determination of live loads, which should be accounted for as part of drainage design).
  5. Roofs may drain off a roof edge, or by means of internal plumbing (both are permissible under the RoofStar Guarantee Program).
  6. When a roof is designed to drain off an edge, water may drain freely or be collected by means of an external or membrane gutter (See Article 11.1.4.3.) and drained onto a lower roof assembly.
  7. The membrane of the lower roof onto which drain water is directed must be protected from abrasion with splash pads.
  8. Roof drains should be situated in a depression, to compensate for the build-up of membrane at the edge of the drain assembly, which may impede drainage.
  9. When roofs are designed to drain through internal plumbing, drain sumps should be
    1. incorporated into a roof design whenever possible, to increase head pressure above primary roof drains,
    2. designed at least 1m x 1m (39” x 39”) in size (The depth of a sump is a function of insulation thickness; See Article 7.1.4.4.),
    3. designed with sloped insulation, and
    4. additionally reinforced around the perimeter using a reinforced 2-component liquid membrane flashing system, to enhance durability.
  10. All drains located at the level of the field membrane must be fully supported above the supporting deck structure.
  11. When a roof is fully or partially replaced, all flanged drains, scuppers, and overflows, together with internal drain-to-pipe compression seals, and seals exposed to water or ultraviolet light, must be replaced.
  12. If a flow control is present in an existing cast drain leader, the flow control should be reinstalled.
  13. Roofs that support overburden, and roofs that are secured with ballast, must be designed to incorporate a ballast guard that surrounds the drain and promotes proper drainage.
  14. Article 11.3.3.2.).

11.1.3.2. Roof Drain Function and Location

  1. Roof drains must be used only for draining water.
  2. Roof drains on new construction projects must be located at least 457.2 mm (18") away from any adjacent drain, penetration, upstand, edge, or wall (the separation space is measured between openings, excluding the flange), but this requirement does not apply to overflow drains, scupper drains, and membrane gutters (Ref. Article 11.3.3.7. for minimum requirements applicable to scuppers and overflows).
  3. Notwithstanding the requirements in Sentence (1), a cast iron roof drain with a sump receiver must be placed well away from any interference with drain securement.
  4. When a roof is replaced and existing roof drain do not comply with the spacing requirements in this Part, the Design Authority must submit a drawn detail for a review by the Guarantor; the detail must incorporate the following requirements and principles, together with requirements in Subsection 11.3.3:
    1. Specify sheet membrane flashing to seal in the drain to the field membrane (liquid membranes should be the last option).
    2. The membrane target patch properties, dimensions, and installation must conform to the requirements published in Subsection 11.3.3., but when it is not possible to seal the target patch in the horizontal plane (because of interference, for example by a wall or curb), the target patch membrane may be turned up a vertical surface, provided it extends past the edge of the drain flange (insert-type drain) or clamping ring (cast drain) at least 152.4 mm (6”).
    3. The flange on insert drains may not be trimmed.
    4. When a drain flange of an insert-type roof drain must be folded to conform to a wall or curb, specify the use an appropriate tool to bend the flange, to ensure the flange makes full contact with the supporting membrane.
    5. Wall membrane flashings must not terminate under the clamping ring of a cast drain.
    6. The clamping ring of a cast drain must be fully seated to ensure the drain will function properly.

11.1.4. Drains and Membrane Gutters

(The requirements for Subsection 11.1.3., "All Systems", shall be read together with the following Articles)

11.1.4.1. Cast-iron Roof Drains

  1. Only cast-iron roof drains, and existing external couplers used to connect drains to leaders, may be re-used for roof replacement projects.
  2. Drain extensions for cast-iron roof drains should be avoided, since the connection with the cast drain is not sealed; the result is a leak into the roof system.

11.1.4.2. Scuppers and Overflows

(See Note A-11.1.4.2.)

  1. A scupper drain may serve either as a primary roof drain or as a secondary drain.
  2. Where no overflows are specified, the building structure should be designed to carry the total load of water collected on the roof, in the event of primary roof drain failure.
  3. Overflows must be
    1. designed as open-wall scuppers for parapets measuring 152.4 mm (6”) or less in height (Ref. Construction Detail "Open-wall Scupper Drain"), or
    2. designed around the principles of a through-wall scupper when parapets are higher than 152.4 mm (6”) (Ref. Construction Detail "Through-wall Scupper Drain"), and (irrespective of design) shall be
      1. located no higher than 101.6 mm (4”) above the drainage plane,
      2. installed at least 25.4 mm (1”) lower than the lowest elevation of a door, window, or other low-clearance opening, to prevent water intrusion,
      3. situated so that they freely and visibly discharge storm water,
      4. protected with a ballast guard when the overflow is located below the finished roof system surface, and
      5. specified to conform to the spacing and capacities required by the "National Plumbing Code of Canada", Division B, Article 2.4.10.4. (See also Article 11.1.3.1., "Principles of Design").

11.1.4.4. Drains in Planters

  1. Drains designed for structural planters must conform to the requirements in Article 6.1.3.2. of the “RGC Standard for Vegetated Roofs”.

11.1.4.3. Membrane Gutters

(See Note A-11.1.4.3.)

  1. A RoofStar Guarantee may cover a membrane gutter only when the membrane gutter and the adjoining roof area are part of the same scope of work (gutters lined with an adhered membrane and typically integrated into the roof structure).
  2. The Design Authority is responsible to design the membrane gutter for its anticipated capacity, with consideration given to
    1. rainfall and snow load calculations for the building location,
    2. drain type, size, and flow rate, and
    3. size and placement of the overflow drain.
  3. New membrane gutters shall be designed with a minimum width of 304.8 mm (12”) and a depth not exceeding the gutter’s width.
  4. At least 101.6 mm (4") clearance on the horizontal plane is required between any membrane gutter wall and the
    1. the edge of the drain bowl for spun drains, and
    2. the edge of the drain leader for flat spun or welded drains.
  5. Only fully-adhered membranes may be used in membrane gutters.
  6. Metal gutter liners are permissible, provided they are designed to fit over acceptable waterproofing, and the liners conform to the material requirements in Article 11.2.1.3.
  7. Conventionally insulated systems that drain into a membrane gutter must abut solid blocking at the gutter edge, which provides
    1. a stop for the insulation assembly, and
    2. a solid substrate for the securement of flashings and membranes.
  8. An overflow drain must be located at least
    1. 101.6 mm (4”) above the primary membrane gutter drain, and
    2. 25.4 mm (1”) below any mechanical fasteners used to secure the adjoining roof system.
  9. In roof replacement applications, existing membrane gutters may qualify for a RoofStar Guarantee, but should be redesigned if their capacity is undersized, and must incorporate an overflow drain in keeping with the requirements in this Part.
  10. Where the primary drain in an existing membrane gutter is undersized for its capacity, the primary drain must be replaced with one that is properly sized.
  11. When a membrane gutter adjoins a RoofStar-guaranteed water-shedding system, the transition from gutter to roof system shall conform to Article 11.3.3.8.

Section 11.2. Materials

(See Division C, "Accepted Materials")

11.2.1. Material Properties

11.2.1.1. General Requirements

  1. Except for cast-iron roof drains, which are usually supplied and installed by others, only new drains and penetration flashings listed in Division C may be used.
  2. Reuse of any penetration flashing or drain (except serviceable cast iron drains) is prohibited and may void the Guarantee (See Division A, Article 3.2.1.2.).
  3. Sheet membranes used to flash (strip in) drains must conform to the membrane requirements found in Article 9.2.1.1.

11.2.1.2. Roof Drains and Scuppers

(See Note A-11.2.1.2.)

  1. All roof drains
    1. must be designed and manufactured for roof applications only, and shall not be floor drains, and
    2. shall be made so that the roof membrane can be sealed to the drain body or bowl (the membrane seal must not rely solely on a clamping ring).
  2. Cast-iron primary roof drains
    1. must be supplied with a sump receiver and under-deck clamp,
    2. should separate securement of the under-deck clamp and clamping ring from securement for the strainer, and
    3. must be installed by the trade supplying the roof drain.
  3. Cast-iron planter drains must be supplied with a perforated riser that is proprietary to the drain manufacturer (See the “RGC Standard for Vegetated Roofs”, Article 6.1.3.2).
  4. Cast-iron scupper drains must be
    1. supplied with a clamping strainer, and
    2. designed with cast, enclosed (captive) strainer bolt receivers (drains with bolts exposed on the back side of the drain body are not acceptable).
  5. Lead sheet flashing, when specified, must be sized to extend past the drain bowl by at least 152.4 mm (6”), and must have a weight of at least 15 kg/m2 (3 lb/ft2).
  6. All primary flanged insert drains (drains with a stem that inserts into a drain leader)
    1. must be manufactured with a hot-welded or seamless flange at least 101.6 mm (4”) wide (measured from the outer edge of the drain opening),
    2. must be hot-welded at the joints between the bowl/flange and drain stem, and
    3. should incorporate a clamping ring (a clamping ring is recommended for primary flanged insert drains specified on any project), but clamping rings are required when primary flanged insert drains are specified for a RoofStar 15-year Guarantee.
  7. Primary flanged drains (insert drains or scuppers) that connect with plumbing inside the building (“internal” drains) must be constructed of
    1. copper (min. weight: 24 oz. sheet copper; min. thickness: 20-gauge, or 0.889 mm (0.035”)), or
    2. aluminum (min. thickness: 12-gauge, or 2.053 mm (0.08081”)).
  8. Primary flanged drains (insert drains or scuppers) that drain directly to the exterior of the building (“external” drains) must be constructed of
    1. copper (min. weight: of 16 oz.; min. thickness: 24-gauge, or 0.559 mm (0.022”)), or
    2. aluminum (min. thickness: 20-gauge material, or 0.812 mm (0.03196”)).
  9. All scupper drains (open, or closed (boxed)) must be
    1. manufactured with welded seams and joints,
    2. designed to extend past the outside face of the wall, and
    3. fabricated from
      1. copper (min. weight: 16 oz.; min. thickness: 24-gauge, or 0.559 mm (0.022”)), or
      2. aluminum (min. thickness: 20-gauge material, or 0.812 mm (0.03196”)).
  10. In addition to the general requirements for scupper drains, closed (boxed) scupper drains must also be
    1. fully enclosed on four sides, for through-wall applications,
    2. fabricated with a drip edge at the bottom outside edge of the drain to deflect overflow water away from the building, and
    3. fitted with an overflow opening on the outside face of the scupper,
      1. equal in capacity to the main drain leader opening, and
      2. at least 38.1 mm (1 ½”) lower than the top surface of the scupper drain.
  11. Overflow drains
    1. must have a hot-welded or seamless flange at least 101.6 mm (4”) wide when measured from the outer edge of the drain opening, and
    2. may be manufactured from ferrous metals (See Section 13.2.).
  12. All roof drains utilized in a roof assembly that includes gravel ballast or growing media (soil) must be supplied with the drain manufacturer's proprietary primary drain strainer and secondary stainless-steel ballast guard, but when one is not provided, a custom-fabricated guard may be used provided the guard
    1. is fabricated from 20-gauge stainless-steel (0.9525 mm or 0.0375”),
    2. incorporates 6.35 mm (1/4”) perforations, and
    3. equals or exceeds the height of the finished roof system surface.

11.2.1.3. Membrane Gutters and Gutter Liners=

  1. Membrane gutter membranes shall be
    1. accepted by the Guarantor,
    2. acceptable to the manufacturer,
    3. compatible with the adjoining roof system, and
    4. manufactured for full adhesion (semi-adhesion and mechanical securement are not permissible).
  2. A metal gutter liner
    1. may be fabricated from
      1. copper sheet material, incorporating soldered seams, or
      2. stainless steel, incorporating welded seams, and
    2. must conform to the sheet metal requirements in Article 13.2.1.2.

11.2.1.4. Fasteners

  1. Mechanical fasteners used to secure the roof membrane and penetration flashings, or related accessories, must be
    1. properly sized in accordance with roof system securement requirements (See Part 3), and
    2. self-drilling purpose-made screws manufactured with deep, recessed heads.

11.2.1.5. Sealants

  1. Sealants must be manufactured by, or acceptable to, the manufacturer.
  2. Compression sealants must be formulated to provide waterproofed seals under compressive loads.

11.2.1.6. Liquid Membrane Flashing

  1. Only a RoofStar-accepted reinforced two-component catalyzed polymethyl methacrylate (PMMA) or polyurethane methyl methacrylate (PUMA) liquid membrane flashing system may be used on the water plane to flash roof drains, scuppers, and overflows.

Section 11.3. Application

11.3.1. Guarantee Term Requirements

11.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

11.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. incorporate overflow drains in all roof areas,
    2. utilize only primary drains and overflows manufactured with clamping rings, and
    3. ensure the roof membrane is secured with drain clamping rings or, when specified, with a reinforced 2-component liquid membrane flashing applied to conform to the requirements in this Part.

11.3.2. All Systems

11.3.2.1. Condition and Suitability of Roof Drains

  1. All clamping rings and strainers must be unbroken, properly seated, and fully secured.

11.3.2.2. Location and Spacing of Roof Drains

(See also Section 11.1., "Design")

  1. Roof drains for new construction projects must be located at least 457.2 mm (18") away from any adjacent drain, penetration, upstand, edge, or wall (the separation space is measured between openings, excluding the flange).
  2. The 457.2 mm (18") spacing requirement for roof drains does not apply to overflows, scupper drains, and drains used in membrane gutters.
  3. Roof drains and cap membrane seams must be offset from each other at least 304.8 mm (12”), measured from the edge of the drain.

11.3.2.3. Drain Protection Against Blockage

  1. All roof drains must be supplied and installed with a secured strainer to prevent debris from blocking the drain.
  2. When a roof supports overburden or is secured with ballast, drains must be installed together with a surrounding ballast guard that promotes water flow.
  3. When the overburden is a vegetated roof system, roof drains must be protected by both a stone /ballast guard and a separation zone, as required in Article 5.1.3.3. of the "RGC Standard for Vegetated Roofs" .

11.3.2.4. General Installation Requirements

  1. Roof drains must be
    1. secured to the supporting deck structure, or to blocking, and
    2. properly detailed for continuity with specified control layers.
  2. Proprietary water-compression sealant must be used on all drain applications.
  3. When a roof supports overburden or is secured with ballast, drains must be installed together with a surrounding ballast guard that promotes water flow.
  4. When a membrane field seam comes within 152.4 mm (6”) of the drain clamping ring or a drain sump, the roof drain or sump must be separately flashed with a target patch
    1. symmetrical in size and centred over the drain,
    2. cut from the same material as the field membrane,
    3. installed before the field membrane, to achieve positive membrane laps, and
    4. extending past the cut field membrane a sufficient distance for the required seam (Ref. Article 9.3.2.6.).
  5. Drains must be flashed using the primary membrane system or accessories acceptable to the manufacturer and the Guarantor.
  6. When fleece-reinforced liquid membrane systems are used to flash drains, only a RoofStar-accepted reinforced two-component catalyzed polymethyl methacrylate (PMMA) may be used on the drainage plane to flash roof drains, scuppers, and overflows.

11.3.3. Drains and Membrane Gutters

(The requirements for Subsection 11.3.2., "All Systems", shall be read together with the following Articles)

11.3.3.1. Drain Sumps

  1. When a 2-part liquid membrane flashing is specified for reinforcement of drain sumps, the liquid membrane flashing must continuously cover the sides of the sump, overlapping both the sump bottom and the roof field by at least 101.6 mm (4”).

11.3.3.2. General Requirements for Cast-iron Roof Drains

  1. Cast-iron roof drains must be installed by the plumbing/mechanical trade.
  2. When cast-iron roof drains are used, a sump receiver and under-deck clamp must be provided and installed by the trade supplying the roof drain.
  3. Drain extensions for cast-iron roof drains should be avoided.
  4. Existing flow control removed during roof construction should be reinstalled; however, if the replacement roof will support a vegetated roof system, the drainage design must conform to the requirements set out by the Design Authority .
  5. All cast-iron roof drains must be
    1. new or clean,
    2. unbroken (this applies to the clamping ring also), and
    3. flashed in accordance with the manufacturer's published instructions, or to the requirements published in this Part, whichever are greater.
  6. The continuity of air and vapour control layers must be maintained, where the controls are specified.

11.3.3.3. Cast-iron Drains Installed with Continuous Field Membrane

  1. All roof system components, including tapered insulation, must be cut to fit closely around the drain bowl and leader.
  2. The drain flange must be clean and dry.
  3. A membrane-compatible sealant must be applied to the drain flange where it makes contact with the clamping ring.
  4. The field membrane shall
    1. extend over the drain flange and onto the roof field,
    2. be cut for the drain opening so that the opening exceeds the size of the drain pipe,
    3. be seated in a membrane-compatible sealant applied to the drain flange where it makes contact with the clamping ring,
    4. extend inside drain bowl at least 12.7 mm (1/2") past the clamping ring and its attachment points,
    5. be punched or tightly cut for clamping bolt holes (clamping ring bolts must be snugly threaded through each hole),
    6. be formed to conform to the contours of the drain bowl, and
    7. be symmetrical and large enough to extend from the clamping ring at least 152.4 mm (6”) to the edge of the finished seam.
  5. The clamping ring must be seated and secured, ensuring it is not broken.
  6. The drain screen must be securely installed.

11.3.3.4. Cast-iron Drains Installed with Membrane Flashing

  1. All roof system components, including tapered insulation, must be cut to fit closely around the drain bowl and leader.
  2. The drain flange must be clean and dry.
  3. A membrane-compatible sealant must be applied to the drain flange where it makes contact with the clamping ring.
  4. When a membrane field seam comes within 152.4 mm (6”) of the drain clamping ring or a drain sump, the roof drain or sump must be separately flashed with separate membrane flashing ("target patch", "donut"), which shall
    1. match the field membrane in thickness and composition,
    2. be symmetrical and large enough to extend from the clamping ring at least 152.4 mm (6”) to the edge of the finished seam, centred over the drain,
    3. be cut for the drain opening so that the opening exceeds the size of the drain pipe,
    4. be installed before the field membrane, to achieve positive membrane laps,
    5. extend inside drain bowl at least 12.7 mm (1/2") past the clamping ring and its attachment points,
    6. be punched or tightly cut for clamping bolt holes (clamping ring bolts must be snugly threaded through each hole),
    7. be formed to conform to the contours of the drain bowl, and
    8. be hot-welded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch and sealed along the edges of the patch with a compatible sealant (Ref. Article 9.3.2.6.).
  5. The clamping ring must be seated and secured, ensuring it is not broken.
  6. The drain screen must be securely installed..

11.3.3.5. Cast-iron Roof Drain Retrofitting (Replacement Roofing)

  1. Retrofitting a cast-iron roof drain is not recommended, but when retrofitting is unavoidable (i.e., the drain has deteriorated to the extent that it cannot receive a new roof membrane, and removal is not possible),
    1. remove any broken parts and debris,
    2. connect the retrofit insert to internal leaders using only an external coupling (unless impractical - see alternative requirements below), and
    3. follow the requirements set out in Article 11.3.3.2.
  2. When an internal compression seal is used out of necessity to connect a retrofit drain to an existing drain leader,
    1. the joint must be properly prepared to ensure the joined surfaces are clean, smooth, and uniform, and
    2. honing out the cast pipe may be required.
  3. In the absence of a clamping collar, the retrofit insert drain must be sealed to the primary membrane with another method acceptable to the manufacturer and the Guarantor.

11.3.3.6. Flanged Insert-type Roof Drain

  1. Flanged insert drains must be
    1. supported with blocking,
    2. trimmed to remove any sharp corners,
    3. cleaned and prepared to receive membrane,
    4. seated in water cut-off sealant applied to the top of the installed field membrane,
    5. mechanically fastened to the blocking, or to the roof deck, using fasteners conforming to Article 11.2.1.4.,
    6. primed with the manufacturer's accepted primer, and
    7. covered with a target patch
      1. matching the composition of the membrane used in the field,
      2. cut large enough to extend past the flange at least 76.2 mm (3”),
      3. adhered to the flange with the manufacturer's proprietary adhesive,
      4. hot-welded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch (Ref. Article 9.3.2.6.), and
      5. sealed around all edges with the manufacturer's edge sealant.
  2. Only mechanical compression type seals may be used to connect insert-type drains to internal drain leaders; “O”- rings, mastics and caulking are not acceptable methods for sealing these types of drains to leaders.

11.3.3.7. Scuppers and Overflows

  1. Open scupper drains may be constructed to match the height of the roof or membrane gutter edge, but must be fully sealed with membrane flashing (Ref. Construction Detail "Open-wall Scupper Drain").
  2. When a through-wall scupper is specified, only fully enclosed scupper drains (enclosed on all sides and open only at the inflow and outflow ends) may be installed (Ref. Construction Detail "Through-wall Scupper Drain").
  3. Scuppers and overflows that are installed through walls may be installed no closer than 203.2 mm (8") to
    1. a roof drain, or
    2. any protrusion and its flashing.
  4. Scupper and overflow assemblies must be
    1. supported with blocking,
    2. trimmed to remove any sharp corners,
    3. cleaned and prepared to receive membrane,
    4. seated in water cut-off sealant applied to the top of the installed field membrane,
    5. mechanically fastened to the substrate (i.e., blocking, the roof deck, and the wall) with fasteners conforming to Article 11.2.1.4.
    6. primed with the manufacturer's accepted primer, and
    7. covered with a target patch
      1. matching the composition of the membrane used in the field,
      2. cut large enough to extend past the flange at least 76.2 mm (3”),
      3. adhered to the flange with the manufacturer's proprietary adhesive,
      4. hot-welded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch (Ref. Article 9.3.2.6.), and
      5. sealed around all edges with the manufacturer's edge sealant.
  5. Clamping collars must be securely installed according to their design, and where specified.

11.3.3.8. Membrane Gutters

  1. All gutter membranes must be installed according to the manufacturer’s published instructions.
  2. Sheet membranes installed in a gutter must be
    1. carried up an adjoining roof system (measured vertically from the maximum water level)
      1. at least 152.4 mm (6”), or
      2. at least 304.8 mm (12”) in regions with typical heavy snow,
    2. lapped under and sealed to the adjoining membranes at least 152.4 mm (6”),
    3. installed in keeping with application requirements in this Standard,
    4. mechanically secured at their terminations, both on the outside of the gutter edge and on the field, and
    5. secured above the maximum water level at least 152.4 mm (6”) and no more than 304.8 mm (12”) O.C.
  3. Gutter drains and overflows must be installed in keeping with the requirements in Section 11.1., "Design".
  4. Drain flanges that must be bent to accommodate the width of the gutter must be mechanically fastened to the gutter wall before membrane is installed.
  5. A metal gutter liner
    1. must incorporate soldered seams when it is fabricated from copper sheet material,
    2. must incorporate welded seams when it is fabricated from stainless steel, and
    3. must be installed
      1. over an adhered single ply membrane, no less than 2.3 mm (90 mils) thick (bituminous membranes) or 1.5 mm (60 mils) thick (non-bituminous membranes), and
      2. with a separation layer (slip sheet) between the membrane and the metal liner to prevent damage to the membrane caused by the liner at its joints.
  6. The transition from a membrane gutter to a water-shedding system that is insulated (typically ASM only) shall conform to the requirements for membrane gutters in the "Standard for Architectural Sheet Metal (ASM) Roof Systems" (See Construction Detail "Membrane Gutter (Design Elements)" for an illustrated example).



Part 12 - Penetrations and Curbs

Section 12.1. Design

12.1.1. General

12.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

12.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary.

12.1.2. Guarantee Term Requirements

12.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

12.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee; in addition,
    1. when a roof is replaced, all open-top penetration flashings (flashings without a top cover) must be waterproofed as described elsewhere in this Part and shall be installed with clamped double storm collars that are fully sealed around the upper edge,
    2. when a roof is installed on a newly constructed building, all penetration flashings that are usually fitted with a single storm collar (typically supplied and installed by others) must be fitted with a second storm collar, supplied by the Contractor,
    3. all electrical, gas, and other services, that penetrate the roof assembly must be protected against water intrusion with
      1. purpose-made flashings that are sealed into the roof system,
      2. curbs fitted with a “weather head” hood sealed into the curb membrane flashing, or
      3. sealant pockets (used only where unavoidable) that conform to this Part and are at least 101.6 mm (4”) tall, or are elevated the same distance above the water plane (when measured from the water plane to the top of the pocket), and
    4. when penetrations or vent openings in a conventionally insulated roof system are flashed using galvanized or hot-welded materials, the flashings must conform to the requirements in Section 12.2. and shall be
      1. elevated on curbs, and
      2. flashed with the primary membrane.

12.1.3. All Systems

12.1.3.1. General Requirements for Penetrations

  1. Where a roof design includes openings through the roof assembly (i.e., for mechanical or electrical services), the specification and detail drawings shall
    1. provide direction for continuity of control layers, where these layers intersect with any opening or penetration, and
    2. require a curb or an acceptable penetration flashing to enclose and seal each roof opening.
  2. Each penetration (except for clustered or bundled electrical cables) must be flashed separately from others.
  3. Single or bundled electrical cable penetrations must be flashed with a suitable goose-neck flashing, fitted with a weather head.
  4. Penetration flashings must be
    1. new,
    2. suitable for the type of penetration,
    3. proprietary to the manufacturer, if available,
    4. supported with solid blocking (applicable only to metal-flanged flashings; blocking must extend at least 12.7 mm (1/2") beyond flange edges), and
    5. properly sized and fitted around the penetration to permit a seal (gaps between the penetration and the inside of the flashing shall be no more than 12.7 mm (1/2"), or
    6. of sufficient height to be made water-tight with a site-fabricated membrane seal fashioned to enclose the gap between the flashing and the penetration (see Figure 12.3.2.1.-A); the application of liquid sealant around the penetration in an open-top flashing is not acceptable.
  5. Penetration flashings should be selected for their ability to inhibit the intrusion of vermin and insects into the roof assembly and building interior.
  6. Suitable flashings must be specified for penetrations that are expected to expand, contract, or otherwise move.
  7. Cylindrical ("pipe-type") penetrations must be sealed with
    1. the manufacturer’s proprietary rubber-based friction seals that utilize mechanical clamps,
    2. a 2-part site-fabricated or proprietary flashing with a removable inspection/access cap (Ref. Construction Detail "2-Part Retrofit Flashing (Cable Penetration)"), or
    3. roof curbs fitted with customized metal hoods or square-to-round metal flashing.
  8. Aluminum or copper flashings for penetrations may be located at the drainage plane in any assembly type.

12.1.3.2. Galvanized Penetration Flashings

  1. Galvanized flashings and vents may be specified for use in the drainage plane on uninsulated or conventionally insulated systems, provided they conform to the requirements and conditions in Article 12.3.2.2.
  2. All galvanized penetration flashings or vents specified for use in a protected roof system or modified protected roof system must be located on curbs no less than 203.2 mm (8") in height above the finished roof system surface.
  3. Galvanized flashings with a base opening larger than 0.126 m2 (196 in.2) in size must be supported by a curb.

12.1.3.3. Separation Between Details

  1. Penetrations on new construction projects must be separated from
    1. other penetrations, curbs, walls, or changes in plane at least 304.8 mm (12") (this is measured between openings or the edge of a detail and excludes the flashing flange), and
    2. all roof drains at least 457.20 mm (18") (Also see Article 11.1.3.2.).
  2. Penetrations that are closer together than the stated minimum, and which are flashed with a single customized flashing or curb are exempt from the requirement in Sentence (1).
  3. When the separation between details does not comply with the spacing requirements in this Part, only the alternate application methods described in Article 12.3.2.3. will be permitted by the Guarantor.

12.1.3.4. Curbs, Sleepers, and Equipment Pads

  1. The design and placement of curbs and sleepers shall be the responsibility of the Design Authority.
  2. Curbs must be designed so that they can be secured directly to the deck structure, or to intermediate blocking, and must not be situated on top of the roof system.
  3. All curbs, sleepers, and deck-supported equipment pads must be designed to achieve a minimum height of 203.2 mm (8”), measured from the finished roof system surface, to permit proper membrane flashing.
  4. Notwithstanding the minimum height requirement membrane flashing, curbs and sleepers that are completely sealed (enveloped) with membrane, and are free of penetrations through the top face (i.e., equipment isolators) may be less than 203.2 mm (8”) in height but shall be
    1. no less than 101.6 mm (4") in height, or
    2. no less than 127 mm (5") in height when capped with a linear metal flashing.
  5. Equipment isolators are not considered part of the roof system and therefore any leaks caused by or occurring at isolators shall be excluded from coverage under the Guarantee.
  6. Equipment ("housekeeping") pads placed on top of the finished roof system surface and supporting combined loads
    1. less than 90 kg (200 lbs) must be separated from the membrane with a bond-breaking layer (i.e., XPS insulation), and
    2. greater than 90 kg (200 lbs) must conform to the requirements for structural sleepers or equipment pads.
  7. Reinforced liquid membrane flashing systems may be specified only where
    1. sheet membrane applications are not practicable (i.e., complex geometry), or
    2. the top edge of membrane plies must be terminated on a vertical surface and other means of termination are not practicable or even possible.

12.1.3.5. Protection of Roof Membranes

  1. The Design Authority must consider and specify mitigating strategies to preserve the membrane from damage (i.e., specifying grease guards or a reinforced 2-part liquid membrane coating) when mechanical equipment extracts and discharges grease, chemicals, or other contaminants, onto the roof.

12.1.3.6. Railings, Ladders, and Other Attached Structures

  1. Railings, ladders, and other attached structures shall not be affixed at the field membrane level and should be designed for attachment to vertical surfaces only.
  2. Attachment of railings, ladders, and other attached structures to a raised horizontal substrate is strongly discouraged, but when this manner of securement is specified, the design must be submitted in writing by the Design Authority to the Guarantor for review and acceptance through a written Variance.
  3. Ladders, railings, or other structures that may penetrate the roof system, should be designed to minimize thermal bridging (and consequential condensation) or reduced thermal performance; uninsulated direct, rigid connections to the structural deck or walls is strongly discouraged.
  4. Pourable sealant pockets used to flash vertical penetrations should be specified only as a last resort, for use only when other flashing methods are impractical (Ref. Article 12.3.2.8., "Sealant Pockets").

Section 12.2. Materials

(See Division C, "Accepted Materials")

12.2.1. Material Properties

12.2.1.1. Membranes Used for Flashing

  1. Sheet membranes used to flash (strip in) penetrations and curbs shall be
    1. the same membrane used on the roof field, or
    2. sheet or liquid membranes conforming to Article 10.2.1.1.

12.2.1.2. General Requirements for Penetration Flashings

  1. All roof penetration flashings, except flashings that are proprietary to the manufacturer, must be
    1. accepted by or acceptable to the Guarantor,
    2. manufactured to conform to CSA-B272, "Prefabricated Self-Sealing Roof Vent Flashings" (a penetration flashing fabricated by the Contractor is exempt from this requirement),
    3. permanently marked with the standard number it conforms to, which shall be independently validated through published testing by a qualified third-party,
    4. manufactured from sheet metal conforming to the material requirements in Section 13.2., when the flashing is custom-made or fabricated by the Contractor,
    5. compatible with the roof system,
    6. seamless or, in the alternative, fabricated with fully hot-welded joints, including a base flange at least 101.6 mm (4”) wide,
    7. capable of inhibiting the intrusion of vermin and insects into the roof assembly and building interior, and
    8. at least 203.2 mm (8”) tall when measured from the finished roof system surface to an opening, or to the top of the flashing.
  2. Metal penetration flashings that are purpose-made for
    1. electrical cables must be goose-necked and supplied with a downward-facing weather head, and
    2. plumbing vents shall be supplied with a matching settlement cap produced by the same manufacturer.
  3. Galvanized penetration flashings, and galvanized vents, must
    1. meet or exceed the CSA-A93 Standard,
    2. be made with material galvanized steel (26-gauge or heavier) conforming to the metal requirements found in Part 13, "Linear Metal Flashing", and
    3. be at least 203.2 mm (8”) tall when measured from the finished roof system surface to an opening.
  4. Storm collars
    1. must be fashioned from galvanized or stainless steel,
    2. must slope downward from the penetration approximately 45°,
    3. shall be at least 50.8 mm (2”) wide,
    4. shall be self-locking or, in the alternative, manufactured to receive a mechanical band clamp, and
    5. should be fabricated with a channel at the top edge, for retaining sealant.
  5. EPDM used to form a seal between a penetration and its flashing (Ref. Article 12.3.2.1.(12)) shall be semi-cured and possess a nominal thickness of no less than 60 mils.
  6. Unshielded flexible mechanical couplings used to join a flashing and a pipe penetration shall be
    1. certified to meet ASTM C564 or ASTM D5926,
    2. certified to meet ASTM C1173 and CSA-B602,
    3. supplied with top and bottom proprietary screw-type stainless steel mechanical clamps,
    4. leak-proof, resistant to chemicals, UV-stable, and
    5. suitable for the penetration and flashing they join together.

12.2.1.3. Flashings for Heating and Plumbing System Penetrations

  1. All plumbing vent flashings shall be non-ferrous.
  2. Lead plumbing vent flashings must each be
    1. fabricated with sheet lead material weighing no less than 14.65 Kg/m2 (3lb/sf),
    2. properly sized for the pipe, and
    3. supplied with a settlement cap made from the same materials (the inside collar of the settlement cap must fit vertically inside the pipe opening by at least 25.4 mm (1”)).
  3. In addition to the general requirements in Article 12.2.1.2., all metal penetration flashings (except natural airflow vents) used for heating and plumbing penetrations must be
    1. properly sized for the penetration, both in diameter and height,
    2. flexible or sloped to suit the roof slope, and
    3. supplied with a properly sized galvanized storm collar or settlement cap.

12.2.1.4. Reserved

Section 12.3. Application

12.3.1. Guarantee Term Requirements

12.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

12.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall comply with the requirements in Article 12.1.1.2.

12.3.2. All Systems

12.3.2.1. General Requirements for Flashing Penetrations

  1. All penetration flashing materials must be new.
  2. Anything that penetrates through the roof assembly , including openings for ventilation, must be
    1. sealed to each control layer that it passes through or intersects, and
    2. flashed with a curb, a purpose-made flashing, or a custom-fitted flashing, all of which shall be sealed to the roof system so that the penetration or opening is protected from water ingress, to at least 203.2 mm (8") above the finished roof system surface.
  3. Each roof penetration must have its own flashing (except where a purpose-made flashing is designed for multiple penetrations), and each flashing
    1. must be suitable for the slope and penetration, and
    2. must be properly sized and fitted around the penetration to permit a seal.
  4. Non-ferrous penetration flashings and vents that conform to the material requirements in Section 12.2. may be located at the drainage plane in any assembly type.
  5. Lead penetration flashings are not permitted.
  6. All penetration flashings must be clean, dry, absolutely free of contaminants, have an exterior finish that is suitable to receive sheet or liquid membrane flashing, and must be prepared in keeping with any surface preparation requirements published by the membrane manufacturer.
  7. Cable and horizontal pipe penetrations must be flashed with
    1. a purpose-made flashing (i.e., a goose-neck flashing fitted with a weather head),
    2. a sheet membrane-flashed curb fitted with a customized sheet metal hood (shaped to function like a weather head), or
    3. a 2-component fleece-reinforced liquid membrane flashing as described in Article 12.3.2.6. (when other methods are not possible or practicable).
  8. Cables passing through a penetration flashing should be drooped, and horizontal pipes should be fitted with a capillary-breaking collar, to prevent water from tracking along the cable or pipe, into the building; water tracking along cables and horizontal pipes does not constitute a leak and is therefore excluded from coverage under the Guarantee.
  9. Each metal-flanged penetration flashing must be installed after the field membrane and shall be
    1. firmly supported with a panel or with blocking installed below the field membrane, so that firm support extends past the flange edge by at least 12.7 mm (1/2") (See Note A-12.3.2.1.(9)),
    2. trimmed (radiused) to remove any sharp corners,
    3. cleaned and prepared to receive membrane,
    4. seated in water cut-off sealant applied to the top of the installed field membrane,
    5. mechanically fastened to the roof deck, or to the panel or blocking that is secured to the deck, ,
    6. primed with the manufacturer's accepted primer, and
    7. sealed to the field membrane with
      1. its own sheet membrane target patch (the use of a single target patch for multiple penetration flashings is not permissible unless otherwise stated in this Standard) or
      2. membrane flashing (retrofit flashings only).
  10. When penetration flashings are closer than 457.2 mm (18") to a roof drain, the drain must be flashed with a target patch first so that the membrane target patch around the penetration flashing promotes positive drainage; once sealed in with target patches, the field cap sheet membrane may be installed.
  11. When the separation between penetration flashings is less than 304.8 mm (12") but greater than 203.2 mm (8") (Ref. Article 12.1.3.3.), the penetrations must be flashed together with a single membrane target patch that shall
    1. extend past the flange by at least 101.6 mm (4"),
    2. be installed according to the requirements in this Article,
    3. achieve a fully-adhered seal around the circumference of the flashing flange, and
    4. be reinforced at any overlapping joints with T-joint patches.
  12. When the separation between penetration flashings is less than 203.2 mm (8"), or the proximity of penetrations to each other will result in an overlapping of pre-formed flashings, the penetrations must be waterproofed
    1. with a curb,
    2. by elevating the penetrations above the drainage plane, or
    3. with another method acceptable to the Guarantor (See Note A-12.3.2.1.(13)).
  13. Sheet membrane target patches applied over flanged penetration flashings shall be
    1. cut from a single piece of field membrane (when the penetration is large, the target patch may be cut from two pieces of membrane that must be joined with lapped seams conforming to the requirements for seams in Article 9.3.2.6.,
    2. sized to extend past the edge of the flashing flange onto the roof field by at least 76.2 mm (3") (for non-conforming penetration spacing, see Sentence (12) in this Article),
    3. oriented 45-degrees to the direction of drainage,
    4. adhered to the flange with the manufacturer's proprietary adhesive,
    5. fully bonded to the field membrane along the outer 50.8 mm (2”) perimeter of the patch (Ref. Article 9.3.2.6.), and
    6. sealed around all edges with the manufacturer's edge sealant.
  14. Retrofit flashings (metal flashings fitted together around a penetration and riveted or clamped together) shall be flashed with membrane (Ref. Construction Detail "2-Part Retrofit Flashing (Cable Penetration)").
  15. Where required in this Standard, membrane flashing shall be carried up the vertical surface of a penetration flashing at least 203.2 mm (8"), and clamped.
  16. Where a purpose-made flashing does not fit the penetration (i.e., a penetration that is a square post), or when a penetration extends above the top edge of the flashing so that it cannot be enclosed with a cap See Figure 12.3.2.3.-A), the joint between the penetration and the flashing must be sealed
    1. by wrapping the joint with a properly-sized piece of semi-cured EPDM (or its equivalent),
      1. loosely wrapped around the penetration and the flashing at least 1-1/2 times, or adhered to itself and overlapped at least 50.8 mm (2"),
      2. installed free of wrinkles or fish-mouths,
      3. applied so that it extends on either side of the joint by at least 50.8 mm (2"), and
      4. clamped at the top and at the bottom using stainless steel clamps set back from the membrane edge no more than 6.35 mm (1/4"), or
    2. with heat-shrink tubing that
      1. covers both sides of the joint between the penetration and the flashing, by at least 50.8 mm (2"), and
      2. is secured with stainless steel mechanical clamps installed at each end of the tubing.
  17. Penetrations that are flashed but are not immediately sealed using the methods described above must be temporarily protected from the weather with at least one properly fitted, level storm collar.
  18. Unshielded flexible mechanical ("MJ") couplings
    1. shall be clamped to the penetration and its flashing, and sealed along the top edge with an acceptable sealant, and
    2. are suitable for use only with penetrations that will not expand, contract, or move with anticipated building settlement, i.e., fall protection anchors.
  19. On a vertical penetration where a seal cannot be made between the flashing and the penetration (i.e., where the penetration is a hot pipe, or where movement of the penetration is anticipated), the opening between the penetration and top of the flashing must be protected with
    1. at least one storm collar, secured with a separate mechanical (screw-type) clamp, or
    2. no fewer than two storm collars, each manufactured with friction-type clips, and spaced approximately 25.4 mm (1") apart.
  20. All installed storm collars must be sealed with a continuous, untooled bead of acceptable sealant at least 9.53 mm (3/8”) wide, applied to and centered over the joint between the collar and the penetration.
  21. Reinforced liquid membrane flashing systems may be used to seal a penetration on, or within 203.2 mm (8") of, the drainage plane, but only where
    1. the penetration is structurally attached to a solid roof deck (concrete or mass timber), and
    2. the penetration is structurally independent of the roof deck, but is of the same type of material (i.e., steel post passing through a steel deck), or
    3. sheet membrane applications are not practicable (i.e., complex geometry), or
    4. the top edge of sheet membrane plies must be terminated on a vertical surface and other means of terminating them are not practicable or even possible.


Figure 12.3.2.3.-A Alternate Flashing of Pipe Penetration
Forming Part of Sentence 12.3.2.3.(16)
(Click to expand illustration)
Figure 11.3.3.1-1 (SPly).jpg

12.3.2.2. Galvanized Penetration Flashings

  1. Galvanized, hot-welded flashings and vents installed on the drainage plane of uninsulated or conventionally insulated systems
    1. are permissible provided the base opening of the vent does not exceed 0.126 m2 (196 in.2), and
    2. shall be field-wrapped with roof membrane specified by the manufacturer for flashing (non-proprietary membrane-compatible coated flashings are not permissible), or
    3. shall be coated with a liquid flashing system conforming to the application requirements in this Article, when
      1. the roof is sloped less than 1:50 (1/4” in 12”),
      2. the flashing is located in a valley, or
      3. the flashing will be regular exposed to or submerged in water.
  2. All galvanized penetration flashings or vents specified for use in a protected roof system or modified protected roof system shall not be installed at the drainage plane and instead must be located on curbs no less than 203.2 mm (8") in height above the finished roof system surface.
  3. A liquid flashing system applied to flashings and vents
    1. may be a 2-component PMMA system or a single-component liquid flashing system,
    2. must be listed in Division C and acceptable to the Guarantor for this application,
    3. shall be acceptable to the membrane manufacturer,
    4. shall be applied evenly and with straight lines,
    5. must extend up the sides of the vent or flashing at least 101.6 mm (4") above the finished roof system surface, and
    6. must cover the edge of the sheet membrane where it forms a seal with the flashing.

12.3.2.3. Separation Between Penetration Flashings

  1. Penetrations on new construction projects must be separated from
    1. other penetrations, curbs, walls, or changes in plane so that the space between flashings for these details is at least 304.8 mm (12") (this is measured between openings or the edge of a detail and excludes the flashing flange), and
    2. roof drains at least 457.20 (18") (Also see Article 11.1.3.2.).
  2. When the separation between penetration flashings does not conform to the minimum spacing requirements, the application options described in Article 12.3.2.1. must be followed.

12.3.2.4. Curbs, Sleepers, and Equipment Pads

  1. Sheet membrane flashing for curbs must provide continuous waterproofing from the roof field up the vertical plane, at least 203.2 mm (8”) above the finished roof system surface and shall conform to the requirements in Article 10.3.2.3., unless otherwise specified or permitted in this Part; waterproofing of equipment installed on a curb (i.e., isolators and other mounts) is the responsibility of others.
  2. Curb, sleeper, or equipment pad sheet membrane flashing
    1. shall be fully adhered to its substrate,
    2. must lap onto the field membrane by at least 152.4 mm (6"), or extend at least 50.8 mm (2") past perimeter mechanical fastener plates installed on the field, whichever is greater,
    3. must be carried up a vertical surface, above the finished roof system surface, at least 203.2 mm (8") (the exception to this requirement is fully-enveloped sleepers or equipment pads),
    4. must be hand rolled with a membrane manufacturer’s accepted roller, and
    5. shall be secured to the substrate by the Contractor where membrane terminates on a vertical substrate.
  3. All inside and outside corners of sheet membrane-flashed curbs or walls must be reinforced with membrane corner details or seam transition covers
    1. wherever the membrane flashing changes planes (i.e., vertical to horizontal), and
    2. installed in accordance with the manufacturer’s published instructions.
  4. Reinforced liquid membrane flashing systems shall conform to the requirements in Article 12.3.2.6., and may be used only
    1. when approved by the manufacturer,
    2. where sheet membrane applications are not practicable (i.e., complex geometry), or
    3. where the top edge of membrane plies must be terminated on a vertical surface and other means of termination are not practicable or even possible (See also Article 12.3.2.6.).
  5. Sleepers or equipment pads that are completely sealed (enveloped) with sheet membrane must be at least 101.6 mm (4") in height above the finished roof system surface, but when fully enveloped sleepers or equipment pads are capped with linear metal flashing, they must be at least 127 mm (5") in height above the finished roof system surface to provide sufficient height for exposed fasteners.
  6. All penetrations through the top surface of a sleeper or equipment pad must be sealed using
    1. a compression sealant between the membrane and equipment supports, and
    2. a universal sealant applied around the edges of equipment supports.
  7. Equipment ("housekeeping") pads placed on top of the finished roof system surface and supporting combined loads
    1. less than 90 kg (200 lbs) must be separated from the membrane with a bond-breaking layer (i.e., XPS insulation), and
    2. greater than 90 kg (200 lbs) must be waterproofed to conform to the requirements for structural sleepers or equipment pads in this Section.

12.3.2.5. Reserved

12.3.2.6. Liquid Membrane Flashing

  1. Any liquid flashing system shall be used only when permitted by the manufacturer, and it's use shall conform to the permissible applications in this Article.
  2. Two-component fleece-reinforced catalyzed polymethyl methacrylate (PMMA) and polyurethane methyl methacrylate (PUMA) liquid membrane flashing systems must be accepted by the Guarantor and listed in Division C, and
    1. may be used
      1. on the drainage plane,
      2. where sheet membrane flashing may not be practical or even possible,
      3. to terminate the top edge of sheet membrane flashing,
      4. for sheet membrane reinforcement (i.e., at corners),
      5. where abrasion resistance is desirable,
      6. where resistance to contamination of sheet membrane is necessary, or
      7. where the Design Authority specifies its application.
    2. must be compatible with the primary sheet membrane flashing,
    3. shall be applied to a properly prepared substrate, which must be clean, dry, free of contaminants, and primed, all as required by the manufacturer in their published instructions,
    4. must be applied within masked boundaries to produce clean, straight, plumb edges, and
    5. shall be applied to ensure that
      1. the rate of application conforms to the manufacturer's published instructions, unless superseded by this Standard,
      2. the base coating of catalyzed liquid membrane resin evenly and fully covers the masked area,
      3. the manufacturer’s reinforcement fleece is cut to cover the masked area, to within 4.76 mm (1/8”) of all edges,
      4. the fleece is fully embedded in, and saturated with, the based coating of resin, and
      5. the fleece is evenly and thoroughly coated with a second application of catalyzed liquid membrane resin, covering the masked area.
  3. Where a fleece-reinforced 2-component catalyzed polymethyl methacrylate (PMMA) liquid membrane flashing system is used to terminate sheet membrane on the vertical plane, the liquid membrane flashing system must overlap the sheet membrane, and it must extend onto the vertical substrate above the sheet membrane, by no less than 50.8 mm (2") (Ref. Figure 12.3.2.-B).
  4. Fleece-reinforced 2-component catalyzed polymethyl methacrylate (PMMA) liquid membrane flashing system that is used as a substitute for sheet membrane flashing must be carried up a vertical plane at least 203.2 mm (8”), and no less than 203.2 mm (8") onto the horizontal field plane ( See Figure 12.3.2.6.-A).
  5. Single-component polyurethane and silicon-based liquid membrane flashing system
    1. must be accepted by the Guarantor, acceptable to the manufacturer, and shall be listed in Division C,
    2. may be used
      1. to coat galvanized flashings used in the water plane, provided the application follows the requirements in Article 12.3.2.2., "Galvanized Penetration Flashings",
      2. to flash details more than 101.6 mm (4”) above the water plane, that cannot be sealed with sheet-type membranes, or
      3. to seal pre-curb dowels (see Article 14.3.2.7.).
    3. must not be used in the drainage plane, or to reinforce membranes against abrasion,
    4. must be applied in two cured coats, unless otherwise permitted in this Standard, and
    5. must be fleece-reinforced between coats where
      1. the application is considered permanent,
      2. a change in plane (angle) occurs, or
      3. there is a joint between two supports and the liquid membrane must serve as a bridge.
  6. Accessory PMMA detailing products
    1. must be accepted by the Guarantor, acceptable to the manufacturer, and listed in Division C,
    2. must be reinforced with chopped or loose fibres,
    3. shall not be used as a substitute for fleece-reinforced 2-component PMMA systems, where these are required or exclusively permitted,
    4. must be used at locations 101.6 mm (4”) or more above the drainage plane, except where complex details, such as bolt heads, cannot be properly sealed with a fleece-reinforced 2-component PMMA system, and
    5. must not be used where movement is expected.


Figure 12.3.2.6.-A Application Requirements for PMMA on Roof Penetration
Forming Part of Sentence 12.3.2.6.(4)
(Click to expand illustration)
Figure 12.3.-B (Generic).jpg

12.3.2.7. Railings, Ladders, and Other Attached Structures

(See also Construction Detail "Railing")

  1. Fasteners installed to secure railings, ladders, and other structures to the vertical face of walls must be located at least 88.9 mm (3-1/2") above the finished roof surface.
  2. Railings, ladders, and other structures mounted on a waterproofed horizontal substrate that is part of the roof assembly (i.e., on top of a parapet) shall be fully flashed around each base with a fleece-reinforced liquid membrane flashing material, unless directed otherwise by a written Variance issued by the Guarantor, using a product that is
    1. suitable for use in the drainage plane,
    2. applied in keeping with the requirements in Article 12.3.2.6., and
    3. compatible with roofing membranes installed on the substrate.
  3. Railings, ladders, and other structures shall not direct water into a roof system by means of weep holes or the method of fastening.

12.3.2.8. Sealant Pockets

  1. Pourable sealant pockets should be used only when sealing penetration with sheet membranes or reinforced liquid membrane flashing is impractical.
  2. Sealant pockets must be
    1. at least 50.8 mm (2”) deep, and
    2. large enough to provide at least 25.4 mm (1”) of fillable space on all sides of the penetration.
  3. When pourable sealant pockets are installed,
    1. the penetration surfaces must be properly prepared following the sealant manufacturer’s instructions, to ensure a good bond between the penetration and the sealant,
    2. only the membrane manufacturer’s approved proprietary UV-stable urethane-based structural sealants may be used to fill sealant pockets,
    3. the sealant must be crowned to shed water,
    4. the sealant pocket shall be sealed to the roof membrane following requirements published elsewhere in this Standard, and
    5. a site-formed non-bituminous flexible roof membrane storm collar must be fitted and secured to the penetration with stainless steel clamps.

Part 13 - Linear Metal Flashing

Section 13.1. Design

13.1.1. General

13.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

13.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Drip edge means the bent (kicked-out) hemmed edge of a linear metal flashing, measuring at least 19.05 mm (3/4") and angled no more than 30° from vertical ("Architectural Sheet Metal Manual" published by the Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA), Sixth Ed.: p. 2.3); it is used to direct dripping water away from the face of the metal flashing or the materials it is protecting, such as a wall. A drip edge may be fabricated on any linear metal flashing but is commonly used on coping (parapet cap) and counter-flashing (also see the Glossary for a colloquial use of the term).
    2. Hemmed edge means an edge of a linear metal flashing that is folded onto itself (bent 180°), to render a smooth (not raw or sharp) finish (this is sometimes referred to as a "safety edge").
    3. Linear metal flashing means flashings cut and shaped from flat metal stock, to redirect water at roof perimeters and edges, or to control the flow of water in valleys and drainage spillways. Linear metal flashings also protect roof membranes from weathering and damage and provide an aesthetic finish to the roof system.

13.1.2. Guarantee Term Requirements

13.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

13.1.2.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. include only linear metal flashings fabricated from 24-guage stock (or thicker).

13.1.3. All Systems

13.1.3.1. Scope and Function

(See also the "Architectural Sheet Metal Manual" published by the Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA))

  1. Linear metal flashings described in this Part and referenced elsewhere in this Standard
    1. are considered necessary and integral to the scope of a project designed and constructed to qualify for a RoofStar Guarantee,
    2. do not perform a waterproofing function and therefore must be specified for use over membrane flashing, or designed to shed water onto a waterproofing or water-shedding primary material,
    3. shall be new (reuse of any existing linear metal flashings is prohibited and may void the Guarantee (See Division A, Article 3.2.1.2., "Limitations and Exclusions of Guarantee"), and
    4. shall be Contractor-fabricated to suit the project requirements or shall be listed in Division C as materials pre-engineered and manufactured by a metal supplier.
  2. The requirements in this Part apply almost entirely to Contractor-fabricated linear metal flashings; consequently, RoofStar-accepted pre-engineered products accepted as systems are exempt from the requirements in this Part for metal gauge, profile, and securement, unless expressly stated otherwise.
  3. Linear metal flashings
    1. must be specified when UV-sensitive membranes require protection, or when membrane edges will otherwise be exposed to the sun, to water, or to physical damage, and
    2. may be specified to cover parapet caps, sleepers, or curbs
      1. for aesthetic reasons, or
      2. to protect the membrane from damage resulting from maintenance (i.e., pressure washing of decks or pavers), or from foot traffic.

13.1.3.2. Information Required in Specifications

  1. Subject to the requirements in this Standard, the Design Authority must specify
    1. metal type, finish, and gauge,
    2. seam types,
    3. length of flashings (if different from the requirements in this Part), and
    4. method of attachment (concealed or exposed fasteners).
  2. Design drawings must detail metal flashing profiles desired for the project.

13.1.3.3. Securement

  1. Securement of all linear metal flashings shall be specified in keeping with the application requirements in Article 13.3.2.1.

13.1.3.4. Gauge, Dimension Limitations, and Seams

  1. Gauge, dimensions, slope, and length of linear metal flashings must be specified to conform to the requirements in Table 13.1.3.4.-A and Article 13.2.1.2., but shall not be less than 26-Gauge.
  2. Specified seam types shall conform to the requirements in Table 13.1.3.4.-B and Article 13.3.2.2.


Table 13.1.3.4.-A.
Pre-finished Galvanized Steel Cap (Coping) Flashing (Gauge and Length Standards)

Forming Part of Sentence 13.1.3.4.(1).
Horizontal Span Minimum
Slope
Gauge Maximum Flashing
Segment Length
Seam Options
Up to 304.8 mm (12") 2% 26, 24 3048 mm (120") S-lock or Standing Seam
22+ Butt Seams*
304.8 - 914.4 mm (12" to 36") 4% 24 3048 mm (120") S-lock or Standing Seam
22+ Butt Seams*
914.4 mm (36") or greater 6% 24 1219.2 mm (48") S-lock or Standing Seam
22+ Butt Seams*
* Ref. Article 13.3.2.2., "Seams"
Table 13.1.3.4.-B.
Pre-finished Galvanized Steel Vertical Flashing (Gauge and Length Standards)

Forming Part of Sentence 13.1.3.4.(2).
Vertical Face Gauge Maximum Flashing
Segment Length
Vertical Seam Options
Up to 152.4 mm (6") 26 3048 mm (120") S-lock
Up to 203.2 mm (8") 24 3048 mm (120") S-lock
Up to 304.8 mm (12") 22+ 3048 mm (120") Butt Seams*
* Ref. Article 13.3.2.2., "Seams"

13.1.3.5. Fit and Finish

  1. Fit and finish of all linear metal flashings shall conform to the requirements in Subsection 13.2.2.
  2. Drip edges are not required but are strongly recommended for linear metal flashings installed around the outside perimeter of a building, to protect wall finishes (Ref. Article 13.2.2.1.).

13.1.3.6. Cap Flashing, Counter-flashing, and Reglet Flashing

  1. Cap (coping) flashings
    1. are required for all parapets (including parapets on roof areas that are adjacent to each other),
    2. are optional for roof dividers that are fully enveloped with roofing membrane (Ref. Article 10.3.6.2.), and
    3. are recommended on roof dividers where the membrane may be susceptible to abrasion or mechanical damage.
  2. All linear metal cap (coping) flashing specified for parapets shall indicate securement to a solid substrate
    1. at every seam, using S-locks or standing seam clips (Ref. Article 13.3.2.2., "Seams"),
    2. beneath the outside vertical face of the flashing, using hidden clips (Ref. Article 13.3.2.3.), and
    3. on the roof-side (inside) face of the flashing.
  3. The use of exposed fasteners on the exterior face of cap (coping) flashing specified for parapets is not permissible.
  4. When the top surface of a wall exceeds 101.6 mm (4") in width, linear metal coping (cap) flashing must be specified with a minimum slope of 2% toward the roof-side of the parapet, to promote drainage (drainage toward the exterior of a building is not recommended).
  5. All metal cap (coping) flashing must be designed with full, solid support.
  6. When the specified cap flashing material is thicker or heavier than 18-gauge steel or aluminum, or it exceeds the permissible weight or gauge ranges for copper or zinc flashings, the seam and securement design must be submitted to the Guarantor for review prior to tender (See Article 13.3.2.2. concerning flat butt seams).

13.1.3.7. Intersections with Other Assemblies

  1. Where a parapet intersects with a wall, the union must be designed to direct water to the roof, away from the outer surface of the wall, using a metal saddle assembly in combination with the membrane requirements in Article 10.3.4.1. (Ref. Article 13.3.2.3.).

Section 13.2. Materials

(Ref. Division A, Article 3.2.1.2. concerning limitations and exclusions for metal flashing.)

13.2.1. Material Properties

13.2.1.1. Manufacturing and Supply

  1. Linear metal flashings must be new, manufactured and supplied by the Contractor or by an Associate Member of the RCABC, and must conform to the requirements published in this Part.

13.2.1.2. Sheet Metal Grade and Gauge

  1. A mill certificate must be provided by the Contractor when requested by the Design Authority.
  2. The following minimum gauges and/or weights of sheet steel materials apply to all linear metal flashings (the reference standard for gauges is USS REV (metric in mm)):
    1. Galvanized steel: minimum 0.50 mm (0.0196", 26-gauge) galvanized steel sheet, conforming to ASTM A653 / A653M-06 CS Type B, Z275 (G90) coating. Thickness tolerance as per ASTM A924/A924M-06 ±0.08 mm (0.003") for sheet widths not exceeding 1524 mm (60").
    2. Stainless Steel: minimum 0.38 mm (0.014", 28-gauge) stainless steel, Type 302, 304, 316, 2B finish to ASTM A167-82. Maximum thickness tolerance variation ± 0.04 mm (0.0015") based on 1219.2 mm (48") wide sheet.
    3. Aluminum-Zinc alloy-coated steel: minimum 0.50 mm (0.0196", 26-gauge) aluminum-zinc alloy coated steel sheet, conforming to ASTM A792/A792M-06 CS Type B, AZM150 (AZ50) coating. Thickness tolerance as per ASTM A924/A924M-06 ±0.08 mm (0.003") for sheet widths not exceeding 1524 mm (60").
  3. The following minimum gauges and/or weights of non-ferrous materials apply to all linear metal flashings:
    1. Aluminum: minimum 0.80 mm (0.032", 20-gauge) aluminum sheet, utility quality to CSA HA Series - 1975, plain or embossed finish. Maximum thickness tolerance variation ± 0.06 mm (0.0025") based on 1219.2 mm (48") wide sheet.
    2. Copper: minimum 0.56 mm (24-gauge; 0.0216", 16 oz.) copper sheet, cold rolled roofing copper to ASTM B370-81. Maximum thickness tolerance variation ± 0.09 mm (0.0035") based on 1219.2 mm (48") wide sheet.
    3. Zinc: minimum 0.80 mm (0.031") zinc Sheet conforming to European standard EN 988-1996. Maximum thickness tolerance variation ± 0.03 mm (0.0012").
  4. Where a waterproofing system adjoins and "Architectural Sheet Metal System", linear metal flashings must be fabricated from 24-gauge steel stock.

13.2.1.3. Fasteners

  1. Fasteners must be
    1. threaded screws, friction-type pins (i.e., for masonry or concrete), plug (inserts),or rivets (where permitted),
    2. compatible with materials they contact,
    3. corrosion-resistant,
    4. specified by the Design Authority, and
    5. appropriately sized, in both length and thread type, for the material to which they will be secured.
  2. Nails are not acceptable as fasteners.
  3. Notwithstanding the requirements in Sentence (1), threaded fasteners used to secure linear metal flashings
    1. in concealed locations must be at least No. 8, corrosion-resistant screw or expansion fastener with a low-profile head and must be compatible with both the metal flashing material and the substrate.
    2. in exposed locations must be at least No. 10., shall be gasketed (cladding screws), and must match the colour of the materials they fasten.
  4. When pre-engineered linear metal flashing systems are specified, fasteners provided by the manufacturer must be used.
  5. Rivets shall be closed-end, dome-head type, and shall be used only for fastening together linear metal flashings.

13.2.1.4. Sealants

  1. Sealants shall be
    1. non-hardening high-quality butyl or polyurethane,
    2. available in either gun grade or sealant tape form,
    3. suitable for exterior use and able to resist the effects of weathering, and
    4. compatible with, and able to adhere to, the materials to which they are applied.
  2. Sealants shall conform to
    1. CGSB 19-GP-5M, “Sealing Compound, One Component, Acrylic Base, Solvent Curing”,
    2. CAN / CGSB-19.13, “Sealing Compound, One Component, Elastomeric, Chemical Curing”,
    3. CGSB 19-GP-14M, “Sealing Compound, One Component, Butyl-Polyisobutylene Polymer Base, Solvent Curing”, or
    4. CAN / CGSB-19.24, “Multi-Component, Chemical Curing Sealing Compound”.

13.2.2. Fabrication and Finish

13.2.2.1. Fabrication of Flashing

  1. Linear metal flashings must be new, must conform to the requirements published in this Part, and shall be manufactured and supplied
    1. by the Contractor,
    2. for the Contractor by another Contractor (RCABC Member), or
    3. by an Associate Member of the RCABC.
  2. Unless expressly accepted otherwise, all linear metal flashing fabricated by the Contractor shall conform to the requirements in this Part.
  3. Specified drip edges must be broken (bent) outward from the face of the flashing by at least 30° and shall measure at least 19.05 mm (3/4”), extending from the break.
  4. All linear metal flashing, except those that are pre-engineered and expressly accepted by the RGC,
    1. must be hemmed,
    2. shall conform to the minimum requirements in Tables 13.1.-A,
    3. shall incorporate seams conforming to the requirements in Table 13.1.-B, and
    4. may not exceed the maximum length of 3000 mm (120”).
  5. The vertical leg of any metal flashing that overlaps roofing material must be at least 76.2 mm (3") in height, exclusive of the drip or hemmed edge, when measured between each break and shall overlap the edge of a membrane (i.e., membrane flashing on a wall) by at least 25.4 mm (1”).
  6. Metal edge flashing must be fabricated with
    1. a flange measuring no less than 101.6 mm (4") in width,
    2. a vertical drop and hemmed drip edge at least 50.8 mm (2"), and (When transitioning to a lower water-shedding systems), and
    3. a sloped drop of no less than 101.6 mm (4").
  7. Metal edge flashing may be constructed with or without an upstand at the outside edge (Edge flashing intended as a drainage edge may perform best without an upstand).

13.2.2.2. Pre-painted Finishes

  1. When a painted finish on linear metal flashing is specified, only SMP and PVDF pre-painted finishes are acceptable.
  2. Where Architectural Metal Roofing is installed, adjoining linear metal flashing must have the same finish as the metal panels.

Section 13.3. Application

13.3.1. Guarantee Term Requirements

13.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

13.3.1.2. RoofStar 15-Year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, and shall
    1. utilize only (minimum) 24-gauge linear metal flashing material.

13.3.2. All Systems

13.3.2.1. General Requirements for Linear Metal Flashing

  1. RoofStar-accepted pre-engineered securement systems must be secured according to the manufacturer’s specifications.
  2. All linear metal flashing installed over an organic substrate (i.e., wood) shall be separated from the substrate with a suitable separation material (i.e., self-adhered bituminous membrane used as eave protection in a water-shedding roof system).
  3. Unless otherwise provided for in this Part, mechanical fasteners used to secure linear metal flashing or their clips
    1. shall conform to the fasteners requirements in Article 13.2.1.3.,
    2. shall be spaced no more than 304.8 mm (12”) O.C.,
    3. shall be firmly fastened, without distorting secured materials,
    4. must penetrate the substrate as specified in the screw manufacturer’s published minimum values, but shall nevertheless penetrate
      1. through the back surface of steel framing at least 19.05 mm (3/4"),
      2. into or through plywood so that screw threads engage its full thickness, excluding the unthreaded tip, and
      3. into solid substrate (i.e., dimensional lumber or concrete) at least 25.4 mm (1"), and
      4. must be installed at least 88.9 mm (3-1/2") above the finished roof system surface.
  4. Canted edge metal flashing may be mechanically fastened from the outside face but shall not be face-fastened on the roof side of the flashing.
  5. Sealants must be tooled to positively shed water.

13.3.2.2. Seams

(The requirements in Article 13.3.2.1., "General Requirements for Linear Metal Flashing", shall be read together with the following requirements. See also Article 13.1.3.4.)

  1. RoofStar-accepted pre-engineered linear metal flashing may be joined together using seams specified for the accepted flashing.
  2. All linear metal flashing that is not pre-engineered must be seamed together following the requirements set out in this Article.
  3. All seams must allow for metal expansion and contraction.
  4. The seam and securement design must be approved by the Guarantor when the specified cap flashing material
    1. is steel or aluminum, and the material is thicker or heavier than 18-gauge, or
    2. is copper and zinc, and the material thickness or weight exceeds the weight or gauge requirements in Article 13.2.1.2.
  5. Straight (linear) joints between lengths of linear metal flashing must be fully seamed using only an S-lock ( Figure 13.3.2.2.-A) or Standing Seam ( Figure 13.3.2.2.-B), but this requirement does not apply to
    1. flashing fashioned from 22-gauge metal (or heavier), or
    2. the vertical face of any flashing that is concealed by a wall assembly, counter-flashing, or equipment flange, in which case the vertical joint may be lap-seamed, provided the overlap
      1. is no less than 101.6 mm (4”) when fully caulked in the lap, or
      2. is no less than 152.4 mm (6”) when installed without caulking in the lap.
  6. The top face (horizontal plane) of flashings that intersect at a corner (i.e., coping flashing) must be joined with a standing seam.
  7. Where drip edges meet at an outside corner, the cut edges of the mitred joint must be mechanically connected (Closed with a "rat tail").
  8. When the face of vertically-oriented flashing forms an outside corner, and the height of the flashing
    1. is greater than 101.6 mm (4”), the two flashings must be joined using only a standing seam.
    2. is 101.6 mm (4”) or less, the two flashings must be joined using
      1. a standing seam,
      2. an S-lock, or
      3. a lap joint, but the drip edges must be mechanically connected (Closed with a "rat tail").
  9. When the face of vertically-oriented flashing forms an inside corner, and the height of the flashing
    1. is greater than 101.6 mm (4”), the two flashings must be joined using only a standing seam.
    2. is 101.6 mm (4”) or less, the two flashings must be joined using
      1. a standing seam, or
      2. a flat overlapped seam.
  10. Sealant applied to S-lock or standing seams is not a requirement in this Standard, but when it is specified
    1. the sealant must be applied along the full length of the seam, and
    2. any sealant that extrudes from the seam during the seaming process must be removed and discarded (See Article 1.3.2.2., "Workmanship").
  11. Standing seams must incorporate clips when the seam is longer than 101.6 mm (4”), and the clips must be
    1. fabricated from flat metal stock 24-gauge or heavier,
    2. at least 38.1 mm (1-1/2”) wide,
    3. spaced apart from each other no more than 203.2 mm (8”) O.C.,
    4. embedded in an acceptable sealant, and
    5. secured with at least 2 acceptable low-profile flat head screws.
  12. S-locked seams must be secured through flashing tab (leaf) with at least one (1) acceptable low-profile flat head screw when the seam is longer than 101.6 mm (4”), but fasteners must not be spaced more than 203.2 mm (8”) O.C.
  13. Flat butt seams
    1. are permissible only for cap (coping) flashings, and only when the flashing is fabricated from steel or aluminum ranging in thickness from 22-Gauge to 18-Gauge (the same applies to the equivalents for copper and zinc sheet material, by gauge or weight), and
    2. must have a hemmed front edge fabricated to hook onto a supporting saddle.
  14. The saddle for flat butt seams must be
    1. manufactured from the same material as the flashing,
    2. formed to match the profile of the cap flashing,
    3. fabricated with a hook along the front face,
    4. secured to the parapet with screws,
    5. installed to underlap the butt joint by at least 101.6 mm (4”) on either side,
    6. seated in two parallel beads of un-tooled sealant or butyl tape, which must be applied between the saddle and flashing, on either side of the butt joint, to all three adjoining faces, and
    7. secured to the cap flashing along both faces of the parapet (See Article 13.3.2.1.).


Figure 13.3.2.2.-A S-Lock, Double
Forming Part of Sentence 13.3.2.2.(5)
(Click to expand illustration)
Figure 13.3.2.2.-B Standing Seam
Forming Part of Sentence 13.3.2.2.(5)
(Click to expand illustration)
MF - S-Lock, Double.png MF - Standing Seam.png

13.3.2.3. Cap Flashing, Counter-flashing, and Reglet Flashing

(The requirements in Article 13.3.2.1., "General Requirements for Linear Metal Flashing", shall be read together with the following requirements)

  1. Cap (coping) flashings must be
    1. solidly and fully supported ,
    2. separated from organic materials (i.e., wood) with roofing membrane,
    3. joined using standing seams or S-locks (Ref. Article 13.3.2.2.), and
    4. secured against displacement by wind.
  2. In addition to the requirements in Sentence (1), cap (coping) flashing installed on parapets must be secured
    1. beneath the outside vertical face of the flashing with hidden clips that hook into the drip edge by at least 12.7 mm (1/2") (Ref. Article 13.3.2.3.; exposed fasteners are not permitted), and
    2. along the roof-side face of the flashing, using either hidden clips or cladding fasteners (the method used shall be what is specified by the Design Authority).
  3. Unless otherwise permitted in this Standard or by a written Variance from the Guarantor, hidden clips shall be secured to the vertical face of a parapet wall and shall not be mechanically attached to the top of the coping.
  4. In addition to the requirements in Sentence (1), cap (coping) flashings installed on roof dividers and fire separation walls (Ref. Article 10.3.4.4.)
    1. may be face-fastened, provided the roof divider or fire separation wall is less than 1 m (39") tall, but
    2. shall be secured with hidden clips on both sides when the roof divider or fire separation wall exceeds a height of 1 m.
  5. When using exposed screws to secure cap (coping) flashing is permissible, screws shall be located no more than 25.4 mm (1") above the break for the drip edge and provision shall be made for metal expansion and contraction.
  6. Where hidden metal clips are required, they must
    1. be at least 24-gauge,
    2. be fastened as close to the bottom edge (hook) as practical but must not be fastened further than a maximum of 76.2 mm (3") from the bottom edge (hook), and
    3. engage drip or safety edges by a minimum of 12.7 mm (1/2").
  7. Continuous concealed clips must be attached with fasteners spaced nor more than 304.8 mm (12") O.C.
  8. Discontinuous concealed clips must
    1. consist of a single clip, centred between the seams of each length of metal flashing,
    2. measure at least 1/3 of the length of flashing it will secure but shall not be less than 101.6 mm (4") in length, and
    3. be fastened with screws spaced no more than 304.8 mm (12") O.C.
  9. Fasteners used to secure any cap, counter, or base flashing must be evenly spaced between seams along each length of flashing, and shall be
    1. no fewer than three (3) fasteners for every 3048 mm (120") length of metal flashing, or
    2. two (2) fasteners for every 2438.4 mm (96") length of metal flashing.
  10. When cap (coping) flashings span widths greater than 304.8 mm (12”), and a flat butt seam is specified, the cap flashing must be riveted to the saddle to ensure adequate securement, and the rivets must be no further apart than 203.2 mm (8”).
  11. Parapets that intersect a wall must be flashed with a metal saddle flashing, as shown in the "Construction Details for Linear Metal Flashings" ( Division D).
  12. When the outside face of a cap flashing is concealed by a wall assembly, only the outside face may be lap-seamed, provided the overlap is no less than 101.6 mm (4”) and the overlapping metal is embedded in mastic.
  13. Counter-flashing must be secured to the vertical face, with fasteners or a reglet.
  14. Counter-flashing and termination bars installed as primary securement or protection of membrane flashing
    1. must be hemmed at the top edge and bent (broken) outward from the face of the wall by at least 45°, to form a groove for sealant (The hem shall measure at least 15.88 mm (5/8”) when measured from the break),
    2. shall be attached to the substrate with fasteners spaced no more than 304.8 mm (12”) O.C., and
    3. must be sealed along the top groove with a continuous bead of acceptable sealant, tooled to shed water away from the wall.
  15. A second counter-flashing (to cover a term bar or primary counter-flashing)
    1. applied as a “surface reglet” must be hemmed, broken, and sealed, as described above in this Article, and
    2. must be secured with fasteners spaced no more than 304.8 mm (12”) O.C., but this spacing may be increased to no more than 609.6 mm (24”) O.C., provided the flashing maintains continuous contact with the substrate (See Article 13.3.2.1.).
  16. Base flashings
    1. must “kick out” minimum 50.8 mm (2") over insulation and filter fabric (filter fabric must be tucked up behind the base flashing),
    2. must be secured with fasteners spaced no more than 304.8 mm (12”) O.C., and
    3. may be fashioned as one piece, or as a 2-piece flashing that includes a lower, detachable segment to facilitate roof maintenance.
  17. Linear metal flashing secured in a reglet (cut groove) must be
    1. installed above the membrane flashing,
    2. inserted at least 12.7 mm (1/2”),
    3. friction-fitted within the reglet or secured on the exposed face with an acceptable fastener, and
    4. sealed with a continuous bead of tooled gunnable sealant.
  18. Where parallel and overlapping reglet flashings are used, the joints between flashing segments must be offset by at least 304.8 mm (12”), except at corners.

13.3.2.4. Metal Edge Terminations

  1. Metal edge terminations (including "gravel stop" flashings) are integrated into the membrane system and therefore shall be installed to conform to Article 10.3.4.2.

13.3.2.5. Canted Edges

  1. Metal flashings on canted edges must be face-fastened on the exterior face of the flashing or, when the height of the canted edge permits, at least 88.9 mm (3-1/2”) above the drainage plane.
  2. Flashing must be secured with cladding fasteners, evenly spaced between seams along each length of flashing, using no fewer than
    1. three (3) fasteners for every 3048 mm (120") length of metal flashing, or
    2. two (2) fasteners for every 2438.4 mm (96") length of metal flashing.

Part 14 - The Roof as a Platform

Section 14.1. Design

(This Part covers the design and installation requirements for roofs that support an overburden, which may be structurally supported or directly supported by the roof assembly)

(See Note A-14.1.)

14.1.1. General

14.1.1.1. Scope

  1. The scope of this Part and the Standard shall be as described in Division A, Part 1.

14.1.1.2. Defined Terms

  1. Words that appear in italics are defined in the Glossary. Additionally, the following terms are used in this Part:
    1. Roof Coverings means (without limitation) gravel, wearing surfaces, Vegetated Roof Systems, pavers, cast-in-place concrete, rubberized surfaces, broadly covering and directly superimposed on the roof assembly.
    2. Structures and Equipment means structurally supported or portable objects including (without limitation) wood or composite decks and walkways, planters, "amenity spaces" (inclusive of furnishings, hot tubs, gazebos, pergolas, and play areas), nets and wind screens, photovoltaics, satellite equipment, light standards, lightning rods, sculptures, pools, and other water features.

14.1.2. Guarantee Term Requirements

14.1.2.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

14.1.2.2. RoofStar 15-year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

14.1.2.3. RoofStar Vegetated Roof Guarantee

  1. To qualify for a RoofStar Vegetated Roof Guarantee, the supporting roof assembly shall
    1. comply with the requirements in this Part for a RoofStar 5-year Guarantee, RoofStar 10-year Guarantee, or a RoofStar 15-year Guarantee,
    2. be acceptable to the manufacturer as support for a vegetated roof system, and
    3. comply with the related requirements in the “RGC Standard for Vegetated Roofs”.

14.1.3. All Systems

14.1.3.1. Coverage and Limitations

  1. Coverage under the RoofStar Guarantee shall be as described in Division A, Article 3.2.1.2.

14.1.3.2. Loads

  1. The building structure must be designed to support any live loads specified by the Code having jurisdiction, including loads from any covering, amenity space, structure, or live loads superimposed upon the roof system.
  2. Roof assemblies
    1. must be designed as a protected roof system when they cannot support the superimposed loads described above (See also Article 8.1.4.1.).
    2. must be designed as a protected roof system when the roof covering is
      1. a semi-intensive vegetated roof system, or
      2. an intensive vegetated roof system (See Article 1.1.3.2., “RGC Standard for Vegetated Roofs”).
    3. should be designed as a protected roof system when the roof covering or living (amenity) space
      1. exceeds 152.4 mm (6”) in depth,
      2. includes cast-in-place concrete surface,
      3. is installed over a podium roof area adjacent to residential high-rise structures,
      4. includes water features or pools, or
      5. includes expansive terrace areas or play spaces.
  3. When the superimposed load is a vegetated roof system, the design of the supporting roof assembly shall conform to the requirements in Article 1.1.3.1. and Article 1.1.3.2. of the “RGC Standard for Vegetated Roofs” and shall take into consideration the future loads from a mature, fully saturated vegetated roof.
  4. Structural supports (i.e., curbs) should be considered to bear heavier dead loads, to resist Specified Wind Loads, or to secure the equipment during seismic events.

14.1.3.3. Securement of Roof Coverings, Structures, and Equipment

  1. The Design Authority is responsible to specify the appropriate securement design of roof coverings, structures, and equipment, to resist Specified Wind Loads.
  2. Vegetated roof systems shall be secured in keeping with the requirements of the “RGC Standard for Vegetated Roofs” .
  3. Where structural securement is desirable or required,
    1. structural supports must be fully waterproofed (curbs, sleepers, posts) and
    2. the superimposed structure or equipment must be secured to the structural support at least 203.2 mm (8”) above the drainage plane (See Part 12,"Penetrations and Curbs", and Part 3, "Securing the Roof Assembly").

14.1.3.4. Design for Repairs and Renewal

  1. Each design should, without limitation, include consideration for
    1. the inevitability of roof repairs or replacement,
    2. access for maintenance, and
    3. material removal, storage, and replacement logistics.

14.1.3.5. Roof Membranes

  1. Membranes must be selected for their ability to resist accidental puncture by human activity on the roof; the minimum puncture resistance must be at least 400 N (See Table 9.1. in Article 9.2.1.1.).

14.1.3.6. Membrane Protection

  1. Membranes must be protected from damage incurred
    1. during the construction of a building,
    2. from normal use and occupancy of the roof, and
    3. from maintenance of any installation on top of a roof system, after the building has been commissioned.
  2. To prevent accidental damage and puncture from falling objects, conventional insulated systems at elevations lower than those designed for human occupancy should include a protective wearing course or, in the alternative, should be designed as a protected roof system.
  3. Where membranes installed on vertical surfaces may be damaged from foot traffic or shifting coverings, they must be protected (i.e., with base metal flashing; ref. Article 13.1.3.6.).

14.1.3.7. Membrane Integrity Testing and Electronic Leak Detection

(See Article 1.1.3.3. and Article 1.1.3.4.)

14.1.3.8. Drainage

  1. Roofs designed as platforms to support roof coverings, amenity spaces, or equipment must promote unimpeded drainage of storm or irrigation water.
  2. The drainage of a roof assembly supporting a vegetated roof system shall be designed in coordination with the design requirements in the “RGC Standard for Vegetated Roofs” .
  3. Where a roof covering material naturally drains (i.e., gravel), no additional drainage design is required, but when it does not naturally drain, the design must incorporate a drainage plane on top of the completed roof system.
  4. Overburden must be contained with drain guards, rigid barriers, and filter fabric (See also Article 11.3.2.3.).
  5. To facilitate the adequate movement of water and minimize or prevent damming when non-structural supports are oriented perpendicular to (across) the direction of drainage, the design must
    1. specify shorter supports, to a maximum length of 1219.2 mm (48"), and
    2. incorporate drainage mats beneath supports longer than 1219.2 mm (48") in any direction.
  6. Equipment installed on structural supports, or on top of the roof system, must be spaced or located to promote access to drains, ease of maintenance, and worker or occupant safety.

14.1.3.9. Filter Fabric

  1. Filter fabrics are required when the roof supports
    1. a vegetated roof system (See Part 6 in the “RGC Standard for Vegetated Roofs”),
    2. sand and other fine materials,
    3. gravel with a diameter less than 12.7 mm (1/2”),
    4. wet mortar or concrete, or
    5. XPS insulation above the membrane (See Note A-14.1.3.9.).

14.1.3.10. Gravel

(See Note A-14.1.3.10.)

  1. When smooth stone (aggregate rock) is specified as the roof covering (different from ballast),
    1. only washed gravel may be used, and
    2. the design must include gravel guards around roof drains.
  2. When the gravel used as a roof covering is crushed, or is smaller than 12.7 mm (1/2”),
    1. a geotextile protection layer must be installed immediately above the roof membrane, and
    2. the crushed gravel must be deep enough to hold the geotextile protection layer in place.

14.1.3.11. Wearing Surfaces

(See also Article 9.1.3.4. concerning wearing surfaces and drainage requirements)

  1. Any wearing surface may be installed on an uninsulated or conventionally insulated system, provided
    1. the compressive strength of the insulation will support it,
    2. insulation is covered with a suitable overlay (See Article 8.1.4.1.),
    3. the wearing surface does not bond with or touch the roof field membrane or membrane flashing, and
    4. drainage of storm or irrigation water is not impeded.
  2. When a wearing surface is specified,
    1. it must incorporate measures to protect the roof membrane from damage,
    2. perimeter membranes and penetrations must be protected from abrasion by the wearing surface,
    3. the design must provide a drainage space below the wearing surface measuring at least 12.7 mm (1/2”) in depth, and
    4. the design must provide a vertical drainage gap between the wearing surface and any openings.
  3. When cast-in-place concrete is specified as the wearing surface (See Note A-14.1.3.11.), the design must conform to the other requirements in this Article, and the concrete must be separated from the membrane with
    1. a bond-breaking material, such as a proprietary drainage mat or XPS insulation, and
    2. filter fabric or a barrier material acceptable to the membrane manufacturer, able to prevent the concrete slurry from reaching the membrane.

14.1.3.12. Vegetated Roof Systems

  1. Vegetated Roof Systems (VRS) must be designed to meet the requirements in the “RGC Standard for Vegetated Roofs”; this includes membrane protection, drainage, water retention materials, filter fabrics, etc.

14.1.3.13. Structures and Equipment

  1. Non-structural installations superimposed on a roof assembly
    1. are recommended for smaller installations, to
      1. minimize the number of penetrations, curbs, or sleepers necessary for structural securement,
      2. eliminate possible weak points in the roof system, where a leak may occur,
      3. avoid dedicated mechanical drainage, and
      4. simplify removal of materials when membrane repairs are required.
    2. must take into account inevitable roof renewal (see Note A-14.1.3.13.,
    3. must be placed on an appropriate protection layer or supported by pedestals, pavers, or other means of distributing weight and point loading, and
    4. may be placed on an insulated roof system provided the insulation will support all anticipated dead loads, live loads and point loads (See Article 14.1.3.2., "Loads").
  2. Structurally supported installations that are
    1. cast-in-place should be constructed on a pre‐curb that is continuously waterproofed as part of the primary roof membrane and waterproofed independently of the primary roof membrane.
    2. pre-cast must be secured
      1. to a pre‐curb that is continuously waterproofed as a continuation of the primary roof membrane, or
      2. to structural supports that are waterproofed in keeping with the requirements in Part 12.
  3. When concrete walls or structures are constructed without a pre-curb, all concrete surfaces must be fully and continuously enveloped with the primary roof membrane (See also Division A, Article 3.2.1.2.).
  4. Pre‐curbs must be
    1. at least 101.6 mm (4") in height above the drainage plane of the highest adjacent roof assembly,
    2. completely enveloped with fully adhered acceptable membrane flashing (including all faces of drainage knock‐outs), and
    3. properly waterproofed around dowels in their final position, using
      1. a 2-component catalyzed polymethyl methacrylate (PMMA) or polyurethane methyl methacrylate (PUMA) reinforced liquid membrane flashing system, or
      2. two cured coats of an Accepted polyurethane or silicon-based single-component liquid flashing system (See Article 12.3.2.6., "Liquid Membrane Flashing").
  5. When a structural planter adjoins a protected roof system, the planter design must include
    1. a plumbed mechanical drain , or
    2. drainage knock-outs in the pre-curb wall, which should be wide enough to allow for the free flow of water over or past of the membrane flashing plies.
  6. When a structural planter adjoins an insulated roof system, only a plumbed mechanical drain is permissible.
  7. A design review is advisable when a structural water feature incorporates penetrations for wiring, lights, or other submerged features.
  8. Tiles or other architectural finishes may be applied to the waterproofing membrane, subject to a written Variance from the Guarantor and approval by the membrane manufacturer (See Article 1.1.3.6., "Variances").
  9. Drains, re-circulation inlets, and outlets used in water features, must include clamping rings, and must be sealed to the membrane assembly.
  10. When a leak detection system is specified, only non‐ferrous metal drains may be used.

Section 14.2. Materials

14.2.1. Material Properties

14.2.1.1. Field and Flashing Membranes

  1. Refer to Table 9.2.1.1. in Article 9.2.1.1. for field membrane composition, thickness, and selection.
  2. Single and 2-component liquid membrane flashing systems used on any detail, including pre-curbs, must be listed in Division C, and must be proprietary to, or accepted by, the manufacturer.

14.2.1.2. Membrane Protection

  1. Membranes must be protected from damage by installing (directly above the roof membrane)
    1. drainage mat,
    2. an asphaltic core board overlay, measuring at least 4.76 mm (1/8”) thick,
    3. XPS insulation, measuring at least 25.4 mm (1”) thick, or
    4. a geotextile protection layer with a minimum thickness/weight of 200 g/m2 (used in vegetated roof system applications, where decorative gravel is crushed or smaller than 12.7 mm (1/2”) in diameter, or where the roof covering, superimposed structure or equipment does not exceed the load-bearing capacity of the protection material).

14.2.1.3. Reserved

14.2.1.4. Drainage and Water Retention Materials

  1. Drainage mats, geo-synthetic drainage cores, and geo-composites used beneath any non-vegetated overburden, must be
    1. acceptable to the manufacturer,
    2. suitable for the installed roof covering,
    3. selected for their ability to support dead loads, live loads, and point loads, and
    4. capable of permitting the anticipated flow rate of water.
  2. Moisture retention and reservoir layers must be acceptable to the manufacturer/supplier of the Vegetated Roof System.

14.2.1.5. Insulation and Insulation Overlays

(See Part 7, "Insulation", and Part 8, "Insulation Overlays")

  1. When XPS (with or without a concrete topping) is specified as the drainage layer, it must be grooved (by the manufacturer, or as a post-manufacturing alteration).
  2. Insulation and insulation overlays must have a minimum load carrying capacity of 110 Kpa (20 psi), but in any event must be capable of supporting any loads superimposed on the membrane, without compression or distortion of the roof system or any one of its components.

14.2.1.6. Filter Fabric

  1. Filter fabrics must be
    1. acceptable to the manufacturer,
    2. suitable for the installed roof covering,
    3. selected for their ability to support dead loads, live loads, and point loads, and
    4. capable of permitting the anticipated flow rate of water.
  2. The properties, composition, and supply of filtration fabrics used in a vegetated roof system shall conform to the requirements in Article 6.2.1.2. of the “RGC Standard for Vegetated Roofs”.
  3. Fabric filter mats must be
    1. water permeable and have proven long term weather resistance, and
    2. strong enough to withstand traffic abuse and prevent displacement of insulation boards under flotation conditions.

14.2.1.7. Decorative Gravel

  1. Decorative gravel (aggregate) (See Note A-14.1.3.10.) must be washed and may be smooth or crushed.
  2. Large grade gravel may withstand wind scour more effectively than smaller gravel, but the Design Authority must determine the gradients, based on the Specified Wind Loads for the roof (See also Article 3.2.2.3., Gravel Ballast).

14.2.1.8. Pavers and Pedestals

  1. Pavers that are partially supported (i.e., with pedestals) must be capable of resisting anticipated loads.
  2. Pedestals
    1. should be adjustable when a level surface is required, and
    2. must be purpose-made and include an integral spacer rib no more than 4.76 mm (1/8”) wide, to uniformly separate pavers.

Section 14.3. Application

14.3.1. Guarantee Term Requirements

14.3.1.1. RoofStar 5-year Guarantee and RoofStar 10-year Guarantee

  1. To qualify for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee, all projects shall comply with the requirements in this Part.

14.3.1.2. RoofStar 15-year Guarantee

  1. To qualify for a RoofStar 15-year Guarantee, all projects shall comply with the requirements in this Part for a RoofStar 5-year Guarantee or RoofStar 10-year Guarantee.

14.3.2. All Systems

14.3.2.1. Membranes and Membrane Protection

  1. Membranes and membrane flashing must be installed in keeping with the requirements found elsewhere in this Standard.
  2. Protection of roof membranes from mechanical damage caused by tools, accident or the work of others is mandatory during the installation and maintenance of any roof covering or living space (See also Article 9.1.3.4., "Membrane Protection", for related requirements).

14.3.2.2. Filter Fabric

  1. Fabric filter rolls used in any system other than a vegetated roof system must be
    1. at least 2489.2 mm (98") wide,
    2. installed loose-laid (un-bonded) over the insulation and below any type of ballast or roof covering,
    3. overlapped at all edges a minimum of 304.8 mm (12"),
    4. slit to fit over roof penetrations,
    5. cut out around roof drains and other openings,
    6. carried up all vertical transitions (including penetration flashings) above the finished roof system surface at least 76.2 mm (3”), and
    7. loosely held in place at all perimeter edges and curbs, behind metal counter flashings or wall finishes, and
    8. secured around penetration flashings.

14.3.2.3. Drainage

  1. The location of the drainage layer(s) shall conform to the requirements in Part 7.
  2. A second drainage layer may be installed above the insulation, but this is at the discretion of the Design Authority.
  3. Specialized proprietary drainage products must be acceptable to the manufacturer.

14.3.2.4. Decorative Gravel

  1. When gravel (aggregate) is specified as a roof covering, only washed gravel may be used.
  2. Ballast guards must be installed around all roof drains (See Article 11.3.2.3.).
  3. Crushed gravel specified as a roof covering must be
    1. installed over a geotextile protection layer, or its equivalent, when the gravel is crushed or smaller than 12.7 mm (1/2”) in diameter, and
    2. must be applied in quantities sufficient to hold down the protection layer against displacement by wind.

14.3.2.5. Wearing Surfaces

  1. Pavers and unit-type masonry, such as brick or stone, must be supported by
    1. proprietary (purpose-made) pedestals with at least a 4.76 mm (1/8”) integral spacer ribs for uniform spacing of pavers,
    2. a proprietary drainage layer overlaid with a filter fabric mat, or
    3. a drainage layer of loose aggregate (such as pea gravel) measuring at least 25.4 mm (1") in depth, installed over a filter fabric.
  2. Pedestals, or a drainage layer,
    1. must permit at least 12.7 mm (1/2″) of vertical separation between the paver and the underlying substrate, to provide airflow for drying surfaces and assist in leveling, and
    2. should not impede the flow of water or air, and should uniformly distribute the dead load of pavers, and other unit masonry products, as well as predicted live loads.
  3. Cast-in-place concrete installed directly above the roof membrane must be separated from the membrane and its protection layers with material and a filter fabric or barrier material specified by the Design Authority and conforming to the requirements in Article 14.1.3.11.

14.3.2.6. Vegetated Roof Systems

(See Note A-14.3.2.6.)

  1. All Vegetated Roof Systems must be installed according to the requirements in the “RGC Standard for Vegetated Roofs”.

14.3.2.7. Structures and Equipment

  1. Structural installations (i.e., planters, pools, ponds, or water courses) must be constructed with
    1. a pre‐curb (start‐up curb), onto which the installation is formed and poured, or
    2. full-height walls that are formed and poured in direct contact with the structural deck.
  2. Pre‐curbs must
    1. achieve a finished height at least 101.6 mm (4") above the drainage plane of the highest adjacent roof assembly (For an example of this see Construction Detail "Structural Planter"), and
    2. be completely enveloped with fully adhered acceptable sheet or liquid membrane flashing (including all faces of drainage knock‐outs).
  3. All planters and water features must be fully waterproofed on the inside; sheet membrane installation must conform to the requirements in Article 10.3.2.3., and liquid membrane flashing shall conform to the requirements in Article 10.3.3.4.
  4. All membrane flashing shall terminate
    1. on the outside face of the planter wall, at least 50.8 mm (2”) below the upper edge, or
    2. on the inside face of the planter wall with a cut reglet linear metal flashing, caulked with sealant and installed no less than 50.8 mm (2”) above the top surface of growing media.
  5. Structural installations that do not incorporate pre-curbs must be
    1. flashed to cover the complete exterior surface with roof membrane, or
    2. flashed with sheet membrane that is installed, terminated, and protected to conform to Article 10.3.2.3.


    Figure 14.3.2.7. Pre-curbs and Sheet Membrane Flashing
    Forming Part of Article 14.3.2.7.
    (Click to expand illustration)
    SBS Figure 14.3.1.jpg
  6. Dowels (reinforcement bar) must be
    1. inserted into the pre‐curb after application of the membrane flashing, and
    2. waterproofed in their final position, where they penetrate the pre-curb.
  7. Dowels must be waterproofed with
    1. a single application of an accepted, fleece-reinforced 2-component liquid membrane flashing, or
    2. two (2) applications of a single-component liquid membrane flashing,
      1. applied to properly prepared surfaces,
      2. fully cured between coats,
      3. in keeping with the application requirements in Article 10.3.3.4., for 2-component reinforced liquid membrane flashing, or the manufacturer’s instructions, when using a single-component liquid membrane flashing, and
      4. applied no less than 50.8 mm (2”) on vertical surfaces and in a radius around the base of each dowel.
  8. When structures or equipment exceed the limits stated in Division A, Article 3.2.1.2., a membrane integrity scan and any resulting repairs must be undertaken before the membrane is covered.

Notes to Standard

© RCABC 2024
RoofStarTM is a registered Trademark of the RCABC.
No reproduction of this material, in whole or in part, is lawful without the expressed permission of the RCABC Guarantee Corp.